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Institut National de la Santé et de la Recherche Médicale U413, European Institute for Peptide Research (Institut Fédératif de Recherches
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Abstract——Pituitary adenylate cyclase-activating
polypeptide (PACAP) is a 38-amino acid C-terminally
�-amidated peptide that was first isolated 20 years ago
from an ovine hypothalamic extract on the basis of its
ability to stimulate cAMP formation in anterior pitu-
itary cells (Miyata et al., 1989). PACAP belongs to
the vasoactive intestinal polypeptide (VIP)-secretin-
growth hormone-releasing hormone-glucagon super-
family. The sequence of PACAP has been remarkably
well conserved during evolution from protochordates
to mammals, suggesting that PACAP is involved in the
regulation of important biological functions. PACAP is
widely distributed in the brain and peripheral organs,
notably in the endocrine pancreas, gonads, respira-
tory and urogenital tracts. Characterization of the
PACAP precursor has revealed the existence of a
PACAP-related peptide, the activity of which remains
unknown. Two types of PACAP binding sites have
been characterized: type I binding sites exhibit a high
affinity for PACAP and a much lower affinity for VIP,

whereas type II binding sites have similar affinity for
PACAP and VIP. Molecular cloning of PACAP recep-
tors has shown the existence of three distinct receptor
subtypes: the PACAP-specific PAC1-R, which is cou-
pled to several transduction systems, and the PACAP/
VIP-indifferent VPAC1-R and VPAC2-R, which are pri-
marily coupled to adenylyl cyclase. PAC1-Rs are
particularly abundant in the brain, the pituitary and
the adrenal gland, whereas VPAC receptors are ex-
pressed mainly in lung, liver, and testis. The develop-
ment of transgenic animal models and specific PACAP
receptor ligands has strongly contributed to decipher-
ing the various actions of PACAP. Consistent with the
wide distribution of PACAP and its receptors, the pep-
tide has now been shown to exert a large array of
pharmacological effects and biological functions. The
present report reviews the current knowledge con-
cerning the pleiotropic actions of PACAP and dis-
cusses its possible use for future therapeutic applica-
tions.

I. Introduction

In October 1989, Akira Arimura and his coworkers
published an article, now a citation classic, in which
they reported the sequence of a novel regulatory peptide
that stimulated adenylyl cyclase (AC1) activity in ante-

1 Abbreviations: �-MSH, �-melanocyte-stimulating hormone; AC,
adenylyl cyclase; ARC, arcuate nucleus of the hypothalamus; Bcl-2,
B-cell lymphoma 2; BDNF, brain-derived neurotrophic factor; cAMP,
cyclic adenosine monophosphate; c-Jun, jun oncogene; CNS, central
nervous system; CRE, cAMP responsive element; CREB, cAMP-
responsive element-binding protein; CRH, corticotropin-releasing
hormone; E, embryonic day; ECL, enterochromaffin-like; EGL, ex-
ternal granule cell layer; ERK, extracellular signal-regulated kinase;

FSH, follicle-stimulating hormone; GH, growth hormone; GHRH,
growth hormone-releasing hormone; GnRH, gonadotropin-releasing
hormone; hCG, human chorionic gonadotropin; IGL, internal gran-
ule cell layer; IL, interleukin; JNK, c-Jun NH2-terminal kinase; kb,
kilobase(s); LH, luteinizing hormone; LI, like immunoreactivity;
MAPK, mitogen-activated protein kinase; MEK, mitogen-activated
protein kinase kinase; MIP, macrophage inflammatory protein;
MSH, melanocyte-stimulating hormone; NMDA, N-methyl-D-aspar-
tate; NO, nitric oxide; NPY, neuropeptide tyrosine; P, postnatal day;
PAC1-R, PACAP-specific receptor; PACAP(6–38), amino acids 6 to
38 of PACAP; PACAP, pituitary adenylate cyclase-activating
polypeptide; PACAP27, 27-amino acid form of PACAP; PACAP38,
38-amino acid form of PACAP; PACAP-LI, PACAP-like immunore-
activity; PAM, peptidyl glycine �-amidating monooxygenase; PC,
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rior pituitary cells, which they thus called pituitary ad-
enylate cyclase-activating polypeptide (PACAP) (Miyata
et al., 1989; Arimura, 2007). At that time, it was unlikely
that they could predict the keen interest that this new
peptide was going to arouse. Subsequently, it was shown
that PACAP and its receptors are broadly expressed in
the central nervous system (CNS) and in most periph-
eral organs. Consistent with this widespread distribu-
tion, PACAP has been found to exert pleiotropic effects
including control of neurotransmitter release, vasodila-
tion, bronchodilation, activation of intestinal motility,
increase in insulin and histamine secretion, immune
modulation, and stimulation of cell proliferation and/or
differentiation. Twenty years after its discovery, PACAP
has become one of the most studied neuropeptides. To
date, over 2500 articles dealing directly with PACAP
have been published, and the number of articles related
to this fascinating polypeptide continues to increase
exponentially.

The topic of PACAP was reviewed in this journal in
2000 (Vaudry et al., 2000) and in several other journals
(Arimura and Shioda, 1995; Rawlings and Hezareh,
1996; Sherwood et al., 2000; Shioda, 2000). In the last
decade, however, significant new knowledge has been
gained on both PACAP and its receptors. In 2009, we are
celebrating the 20th anniversary of the discovery of
PACAP; at this occasion, we thought that it was espe-
cially appropriate to comprehensively review the cur-
rent knowledge regarding PACAP and its receptors.

II. Pituitary Adenylate Cyclase-Activating
Polypeptide

PACAP has been originally isolated from an ovine
hypothalamus extract on the basis of its ability to stim-
ulate cAMP formation in rat pituitary cells (Miyata et
al., 1989). Hypothalamic neurons containing PACAP
project toward the median eminence and terminate in
the vicinity of the capillary loops of the hypothalamo-
pituitary portal system. However, PACAP is widely ex-
pressed in numerous extra-hypothalamic regions of the
brain as well as in various peripheral tissues.

A. Discovery of Pituitary Adenylate Cyclase-Activating
Polypeptide

To isolate novel hypophysiotropic neuropeptides, the
group of Arimura has screened fractions from an extract
of 4300 ovine hypothalami, by monitoring their stimu-
latory effect on AC activity in cultured rat anterior pi-
tuitary cells. Using this approach, they have isolated in
pure form a peptide that markedly increased cAMP for-
mation, which they named pituitary adenylate cyclase-
activating polypeptide. Sequencing of the peptide re-
vealed that it comprises 38 amino acid residues
(PACAP38) and is C-terminally �-amidated (Fig. 1)
(Miyata et al., 1989). The sequence of PACAP38 encom-
passes an internal cleavage-amidation site (Gly28-Lys29-
Arg30), suggesting that it can generate a 27-residue
�-amidated polypeptide fragment or PACAP27.2 Consis-
tent with this hypothesis, Miyata et al. (1990) have
subsequently isolated from the ovine hypothalamus an-
other fraction capable of stimulating AC activity in ad-
enohypophysial cells, which, upon characterization,
happened to correspond to the N-terminal 27-amino acid
portion of PACAP38 (Miyata et al., 1990). The structure
of the biologically active region of PACAP, within the
PACAP27 sequence, has almost been totally preserved
during evolution, from fish to mammals, two phyla that
diverged some 380 million years ago (Chartrel et al.,
1991; Hoyle, 1998; Sherwood et al., 2000), suggesting
that this peptide may exert essential biological func-
tions. The sequence of human PACAP27 shares 68%
identity with vasoactive intestinal polypeptide (VIP),
identifying PACAP as a member of the VIP- secretin-
GHRH-glucagon superfamily (Fig. 1) (Rosselin et al.,
1982; Campbell and Scanes, 1992; Segre and Goldring,
1993).

B. Secondary Structure of Pituitary Adenylate Cyclase-
Activating Polypeptide

Conformational analyses by circular dichroism and
nuclear magnetic resonance indicate that the second-
ary structure of PACAP27 is mainly characterized by

prohormone convertase; PCR, polymerase chain reaction; PHI, pep-
tide histidine-isoleucine; PI3-K, phosphatidylinositol 3�-OH kinase;
PKA, protein kinase A; PKC, protein kinase C; PLC, phospholipase
C; POMC, pro-opiomelanocortin; PRL, prolactin; PRP, PACAP-re-
lated peptide; PVN, paraventricular nucleus; PYY, peptide tyrosine
tyrosine; RO 25–1553, L-threoninamide, N-acetyl-L-histidyl-L-seryl-
L-�-aspartyl-L-alanyl-L-valyl-L-phenylalanyl-L-threonyl-L-�-glu-
tamyl-L-asparaginyl-L-tyrosyl-L-threonyl-L-lysyl-L-leucyl-L-arginyl-
L-lysyl-L-glutaminyl-L-norleucyl-L-alanyl-L-alanyl-L-lysyl-L-lysyl-L-
tyrosyl-L-leucyl-L-asparaginyl-L-�-aspartyl-L-leucyl-L-lysyl-L-
lysylglycylglycyl-, (25–21)-lactam; RT, reverse transcription; SCN,
suprachiasmatic nucleus; Th, T helper; TRH, thyrotropin-releasing
hormone; TSH, thyroid-stimulating hormone; VIP, vasoactive intes-
tinal polypeptide; VPAC1-R, VIP/PACAP receptor, subtype 1;
VPAC2-R, VIP/PACAP receptor, subtype 2; ZK98299, onapristone.

2 In this review, the abbreviations PACAP38 and PACAP27 have
been used to refer to specific properties of each molecular form. The
abbreviation PACAP has been used to refer to properties that should
be common to both peptides.

PACAP38 HSDGIFTDSYSRYRKQMAVKKYLAAVLGKRYKQRVKNK-NH2
PACAP27 ----------------------------NH2
VIP ---AV---N-T-L----------NSI-N-NH2
Secretin ----T--SEL--L-EGARLQRL-QGLV-NH2
GHRH YA-A---N---KVLG-LSAR-L-QDIMSRQQGESNQERGARARL-NH2
Helodermin ---A---EE--KLLAKL-LQ----SI--S-TSPPP-NH2
Glucagon --Q-T--SD--K-LDSRRAQDFVQWLMNT
GLP-2 -A--S-S-EMNTILDNL-ARDFINWLIQTKITD
PRP DVAH--LNEA-RKVLD-LSAG-H-QSLVA
PHM -A--V--SDF-KLLG-LSA----ESLM-NH2
GIP YAE-T-ISD--IAMDKIHQQDFVNWL-AQKG-KNDWKHNITQ

FIG. 1. Amino acid sequences of the different members of the PACAP-
VIP-secretin-GHRH superfamily in human. -, amino acids identical with
those of PACAP.
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a helical conformation of various lengths, depending
on the medium. In 25% methanol, the disordered
eight-amino acid N-terminal sequence is followed by
four distinct structured domains (Inooka et al., 1992):
the first domain, encompassing residues 9 to 12, forms
a �-turn-like conformation, whereas the three others
are composed of distinct helical regions that extend
from residues 12 to 14, 15 to 20, and 22 to 24 (Inooka
et al., 1992). An �-helix spanning residues 9 to 26,
with a discontinuity between Lys20 and Lys21, is ob-
served in 50% trifluoroethanol, a solvent that stabi-
lizes helical structures (Wray et al., 1993). In 30%
trifluoroethanol, PACAP27 possesses an N-terminal
disordered segment followed by a stable �-helical con-
formation within segment 7 to 27 (González-Muñiz et
al., 2001). When PACAP is bound to dodecylphospho-
choline micelles, usually used to mimic the membrane
environment, the �-helix of PACAP27 extends from
the C terminus to residue Ile5 and is preceded by a
disordered N-terminal domain (Inooka et al., 2001;
Bourgault et al., 2009b). The conformation of PACAP38
mirrors that of PACAP27 and the C-terminal (28–38)
extension exhibits a short helix connected by a flexible
hinge to the 1-to-27 region (Wray et al., 1993). Grass
carp PACAP38, which possesses 89% sequence identity
to human PACAP, exhibits a C-terminal �-helix from
Arg29 to Arg34, near the central helical core, leading to
a ring-like structure (Sze et al., 2007). When the
PACAP(6–38) fragment interacts with the isolated N-
terminal domain of PAC1-R, the peptide adopts a helical
conformation with a bend at residue Ala18 (Sun et al.,
2007), whereas the PACAP(1–21) fragment bound to

PAC1-R exhibits a single �-coil structure in the residue
3-to-7 region, followed by an �-helix (Inooka et al., 2001).

C. Structure of the Pituitary Adenylate Cyclase-
Activating Polypeptide Precursor and Post-
Translational Processing

The cDNA encoding the PACAP precursor has been
characterized in several vertebrate species (Ogi et al.,
1990; Ohkubo et al., 1992; Arimura and Shioda, 1995;
Okazaki et al., 1995) and in a protochordate, the ascid-
ian Chelyosoma productum (McRory and Sherwood,
1997). In human, the cDNA encodes a 176-amino acid
prepro-protein that comprises a 24-amino acid signal
peptide (Hosoya et al., 1992). In all species, the sequence
of PACAP38 is located in the C-terminal domain of the
precursor (Fig. 2). The cDNA sequences of human (Oh-
kubo et al., 1992), sheep (Kimura et al., 1990), rat (Ogi et
al., 1990), and mouse prepro-PACAP (Okazaki et al.,
1995) has revealed the existence of a 29-amino acid
peptide, delimited by basic residues at its N- and C-
terminal extremities, located upstream of PACAP38
(Fig. 2). This peptide, which exhibits moderate struc-
tural homology with PACAP27, has been termed
PACAP-related peptide (PRP) (Ogi et al., 1990; Wray et
al., 1995; Hoyle, 1998). The overall organization of the
PACAP precursor exhibits strong similarities with that
of the VIP precursor. In particular, the VIP precursor
encompasses a VIP-related peptide, called peptide histi-
dine-methionine amide in human (Itoh et al., 1983; Bod-
ner et al., 1985; Svoboda et al., 1986) or peptide histi-
dine-isoleucine amide (PHI) in sheep (Bounjoua et al.,

FIG. 2. Schematic representation of the post-translational processing of the rat PACAP precursor. The nature and location of each cleavage and
amidation site is specified. PAM, peptidyl glycine �-amidating monooxygenase; PC1, -2, or -4, prohormone convertase 1, 2, or 4; SP, signal peptide.
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1991), rat (Nishizawa et al., 1985), mouse (Lamperti et
al., 1991), and chicken (McFarlin et al., 1995), which
possesses moderate amino acid identity with VIP. The
degree of similarity between PACAP27 and PRP (22%)
or VIP and PHI (37%) is less than that between PACAP
and VIP (68%) or PRP and PHI (44%), respectively. It is
thus assumed that intragenomic duplication of a VIP/
PACAP ancestor sequence has occurred before duplica-
tion of the whole ancestor gene (Ohkubo et al., 1992). A
proposed model describing the evolutionary process
leading to the generation of distinct precursors for
PACAP, VIP, secretin, GHRH, and glucagon in mam-
mals is presented in Fig. 3. In submammalian verte-
brates and the tunicate C. productum, the PACAP pre-
cursor comprises both PRP and PACAP (Fig. 3) (see
section II.I).

In mammals, the primary structure of the PACAP
precursor reveals the existence of seven mono- or dibasic
residues that can potentially be cleaved by various pro-
hormone convertases (PC) including PC1, PC2, PC4,
PC5, PC7, furin, and paired basic amino acid-cleaving
enzyme 4 (PACE4) (Seidah et al., 1994, 1998; Seidah
and Chrétien, 1999). In the rat, cleavage at three dibasic
sites (i.e., Arg79-Arg80, Lys129-Arg130, and Arg170-
Arg171) generates a large intermediate precursor of PRP
(big PRP) and a glycine-extended form of PACAP38 (Fig.
2). Cleavage at the single Arg110 followed by hydrolysis
of this C-terminal Arg residue by carboxypeptidases E,
H, or M generates PRP (Rouillé et al., 1995). The Gly169

residue is used by peptidyl glycine �-amidating monoox-
ygenase (Eipper et al., 1992) for the amidation of the

Lys168 residue at the C-terminal extremity of PACAP38.
Finally, the tripeptide Gly158-Lys159-Arg160 can be
cleaved to generate the �-amidated PACAP27 isoform
(Fig. 2). Processing of the PACAP precursor has been
studied in Chinese hamster ovary-K1 cells transfected
with the human PACAP cDNA (Okazaki et al., 1992).
Characterization of the various peptides secreted in the
incubation medium by high-performance liquid chroma-
tography combined with radioimmunoassay detection
has confirmed that processing of the PACAP precursor
actually yields to the formation of PACAP38, PACAP27,
and PRP (Okazaki et al., 1992).

In the rat hypothalamus, PC1 and/or PC2 are inten-
sively expressed in nuclei enriched with PACAP-immu-
noreactive neurons, supporting the hypothesis that
these two endopeptidases could be involved in the pro-
cessing of the PACAP precursor (Köves et al., 1994b;
Zheng et al., 1994; Dong et al., 1997). Cotransfection
experiments in GH4C1 cells have confirmed that both
PC1 and PC2 can actually process the rat PACAP pre-
cursor to generate mature PACAP38 and PACAP27 (Li
et al., 1999). In the rat testis, where PACAP is particu-
larly abundant, PC4 can also process the PACAP pre-
cursor to generate both PACAP38 and PACAP27 (Li et
al., 1998, 2000a, 2000b; Basak et al., 1999).

Like most peptides, PACAP released in the blood cir-
culation exhibits poor metabolic stability, and it has
been established that the half-life of PACAP38 injected
into mice or human is between 2 and 10 min (Zhu et al.,
2003; Li et al., 2007). The rapid breakdown of PACAP is
attributable at least in part to the activity of the proteo-
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lytic enzyme dipeptidyl peptidase IV (Zhu et al., 2003;
Bourgault et al., 2008a); hence, inhibition of dipeptidyl
peptidase IV extends some of the effects of PACAP
(Ahrén and Hughes, 2005). Further investigations are in
progress to identify additional enzymes involved in the
degradation of PACAP. For example, prolyl oligopepti-
dase has been reported to degrade PRP but has no effect
on PACAP (Tenorio-Laranga et al., 2009).

D. The Pituitary Adenylate Cyclase-Activating
Polypeptide Gene

The gene encoding PACAP has been cloned in several
species including human (Hosoya et al., 1992) and
mouse (Fig. 4) (Yamamoto et al., 1998; Cummings et al.,
2002). The PACAP gene is composed of five exons, the
sequence of PRP being encoded by exon 4 and that of
PACAP by exon 5 (Fig. 4). Northern blot analysis has
revealed the presence of a 3-kb PACAP mRNA in the rat
hypothalamus (Hosoya et al., 1993; Hannibal et al.,
1995a). A shorter transcript with a truncated 5�-un-
translated region that uses a testis-specific promoter
has been characterized in the rat testis (Hurley et al.,
1995; Daniel and Habener, 2000). Likewise, shorter
PACAP mRNA has been found in the mouse, bovine, and
human testis (Hurley et al., 1995). It has also been
reported that another short PACAP transcript is pro-
duced in sympathetic neurons (Harakall et al., 1998).

The human PACAP promoter possesses two cAMP-
response-like elements (CRE), a 12-O-tetradecanoyl-
phorbol 13-acetate-response element, a pair of se-
quences homologous to the consensus sequence for
pituitary-specific factor growth hormone transactivator
factor-1-binding sites, which are known to play a role in
the tissue-specific expression of growth hormone (GH),
and six binding domains for the thyroid-specific tran-
scription factor-1 (Bodner et al., 1988; Dollé et al., 1990;

Castrillo et al., 1991; Kim et al., 2002). Alignment of the
human, rat, and mouse genes shows a high level of
sequence conservation. In particular, two CRE and
growth hormone transactivator factor-1 response ele-
ments, a GATA box, and a CT-rich domain with GC
boxes are conserved in all three PACAP genes (Fig. 4)
(Ohkubo et al., 1992; White et al., 2000). The promoter
region of the human PACAP gene does not contain any
apparent TATA or CAAT boxes, which are normally
required for accurate initiation of transcription (Hamp-
sey, 1998). Investigation of the promoter activity has
revealed that PACAP is constitutively expressed and
that transcription of the PACAP gene can be enhanced
by cAMP, phorbol diester, thyroid-specific transcription
factor-1, dexamethasone, progesterone, and even by
PACAP itself (Suzuki et al., 1994; Ha et al., 2000; Hashi-
moto et al., 2000b; Kim et al., 2002; Chi-Wei et al., 2007;
Yang et al., 2007). The 5�-flanking region contains two
neural-restrictive silencer-like elements 1 and 2, which
might be involved in neuron-specific PACAP gene ex-
pression (Fig. 4) (Sugawara et al., 2004; Lee et al., 2006).

The structural organization of the PACAP gene is
similar to those of the VIP gene (Lamperti et al., 1991)
and GHRH gene (Mayo et al., 1985), confirming that all
three genes originate from a common ancestral sequence
through gene duplication (Fig. 3). In human, the PACAP
gene is localized to the P11 region of chromosome 18,
which is associated with holoprosencephaly (Hosoya et
al., 1992; Chang et al., 1993; Golden, 1998) and psychi-
atric disorders, suggesting that PACAP might be in-
volved in the control of brain development and/or the
etiology of schizophrenia (Ishiguro et al., 2001; Kamna-
saran, 2003; Hashimoto et al., 2007; Matsuzaki and
Tohyama, 2008).

To investigate the function of PACAP, several mouse
lines have been created in which PACAP (Hashimoto et
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al., 2001; Hamelink et al., 2002) or both PACAP and
PRP have been deleted (Gray et al., 2001). Animals with
both VIP and PHI gene deletion (Colwell et al., 2003)
have also been generated. Interbreeding PACAP(�/�)
and VIP(�/�) mice made it possible to generate PACAP/
VIP double-knockout animals (Niewiadomski et al.,
2008). Although these animals can survive, their growth
is significantly reduced, and they exhibit a high rate of
mortality after 3 months of age. Finally, transgenic mice
overexpressing PACAP in �-islet cells have been used to
study the involvement of PACAP in diabetes develop-
ment (Yamamoto et al., 2003; Tomimoto et al., 2004).

E. Distribution of Pituitary Adenylate Cyclase-
Activating Polypeptide in the Central Nervous System

Soon after the characterization of PACAP, the distri-
bution of the peptide has been investigated in the brain
of mammals (Arimura et al., 1991; Köves et al., 1991;
Vigh et al., 1991; Kivipelto et al., 1992; Ghatei et al.,
1993) and amphibians (Yon et al., 1992). In rat, radio-
immunoassay measurements have revealed that the
highest concentrations of PACAP occur in the hypotha-
lamic area (Arimura et al., 1991; Ghatei et al., 1993).
Reversed-phase chromatography analysis showed that
PACAP38 is by far the predominant form, PACAP27
representing less than 10% of the total peptide content
in brain tissue (Arimura et al., 1991; Ghatei et al., 1993;
Masuo et al., 1993; Hannibal et al., 1995a; Piggins et al.,
1996). PACAP-containing neurons are not restricted to
the hypothalamic area but are widely distributed in
various brain regions (Gonzalez et al., 1998).

The mapping of PACAP-expressing neurons has been
investigated by immunocytochemistry and in situ hy-
bridization (Table 1). In the rat hypothalamus, PACAP-
immunoreactive neurons are located primarily in the
parvo- and magnocellular neurons of the paraventricu-
lar (PVN) and supraoptic nuclei (Köves et al., 1991,
1994a; Kivipelto et al., 1992; Ando et al., 1994; Kimura
et al., 1994; Hannibal et al., 1995a,b; Piggins et al.,
1996). PACAP mRNA is expressed in the PVN and ar-
cuate nucleus (ARC) (Hannibal et al., 1995b; Murase et
al., 1995; Das et al., 2007). A dense accumulation of
PACAP-immunoreactive fibers is found in the internal
zone of the median eminence and in the vicinity of the
capillaries of the hypothalamo-hypophysial portal sys-
tem (Köves et al., 1990, 1991; Kivipelto et al., 1992;
Tamada et al., 1994; Hannibal et al., 1995a,b; Mikkelsen
et al., 1995). The concentration of PACAP in rat portal
blood (� 65 pM) is at least twice as high as in peripheral
blood, indicating that the peptide released by hypotha-
lamic nerve terminals is actually transported to the
pituitary (Dow et al., 1994). Regional distribution stud-
ies reveal that significant amounts of PACAP38 are also
found in various extra-hypothalamic regions, including
the cerebral cortex, amygdala, hippocampus, pineal
gland, substantia nigra, cerebellum, and pons (Ghatei et
al., 1993; Hannibal, 2002). In the limbic system, PACAP-

immunoreactive fibers are detected in the amygdaloid
complex and in the mediodorsal and paraventricular
nuclei of the thalamus (Köves et al., 1991; Masuo et al.,
1993; Takahashi et al., 1994; Palkovits et al., 1995;
Hannibal, 2002). The bed nucleus of the stria terminalis
contains high concentrations of PACAP- and VIP-immu-
noreactive neurons, but no double-labeled cells have
been detected (Kozicz et al., 1997). In the lateral septum
area, a dense network of immunoreactive fibers inner-
vates blood vessels (Köves et al., 1991). Scattered
PACAP mRNA-expressing cell bodies are observed in
the cingulate and frontal cortex (Mikkelsen et al., 1994),
and immunoreactive cell bodies are found in the olfac-
tory and neocortical area (Hannibal, 2002). In the mes-
encephalon, PACAP-immunopositive neurons are lo-
cated in the ventrolateral periaqueductal gray (Das et
al., 2007), and PACAP-containing fibers innervate the
pretectum and periaquaductal white matter (Tajti et al.,
2001; Hannibal, 2002). PACAP and its mRNA have also
been detected in the cerebellum (Ghatei et al., 1993;
Mikkelsen et al., 1994; Takahashi et al., 1994; Hannibal
et al., 1995a; Nielsen et al., 1998b). Specifically, PACAP-
like immunoreactivity (PACAP-LI) is localized in the
soma and dendrites of Purkinje cells, whose axons di-
rectly contact granule cells (Nielsen et al., 1998b; Han-
nibal, 2002; Cameron et al., 2007). In the myelencepha-
lon, PACAP is found in the brainstem and medulla
oblongata (Ghatei et al., 1993; Légrádi et al., 1994). In
the brainstem, PACAP-positive cell bodies are located in
the locus ceruleus, pontine nucleus, and vagal complex
(Tajti et al., 2001; Hannibal, 2002; Farnham et al.,
2008), and fibers are found in the lateral parabrachial
nucleus (Hannibal, 2002). In the medulla oblongata, the
majority of perikarya exhibiting PACAP-LI is found in
the commissural and medial subnuclei of the solitary
nucleus, the dorsal motor vagal nucleus, the nucleus
ambiguus, the ventrolateral medulla, the ventral med-
ullary surface and the caudal raphe nuclei, supporting
the view that PACAP may act as a regulator of visceral
functions (Légrádi et al., 1994; Hannibal, 2002). In the
spinal cord, PACAP mRNA is expressed in a subpopu-
lation of sensory neurons of the dorsal root ganglia (Mul-
der et al., 1994), and numerous PACAP-immunoreactive
fibers are found in the superficial layer of the dorsal
horns (Moller et al., 1993; Dun et al., 1996a).

The location of PACAP-containing neurons has also
been investigated in the CNS of nonmammalian verte-
brates including birds (Peeters et al., 1998; Nowak and
Zawilska, 2003), amphibians (Yon et al., 1992, 1993b,
2001) and fishes (Matsuda et al., 1997, 2005b; Montero
et al., 1998; Jakab et al., 2004; Mathieu et al., 2004).
Overall, the distribution of PACAP-immunoreactive
cells exhibits a high degree of similarity with that of
mammals. In particular, in the brain of the frog Rana
ridibunda, now renamed Pelophylax ridibundus (Conlon
et al., 2009), prominent groups of PACAP-containing
neurons are located in the hypothalamus [i.e., in the
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TABLE 1
Localization and relative abundance of PACAP mRNA and PACAP–like immunoreactivity in the rat brain

Structures mRNA Cell Bodies Fibers References

Telencephalon
Olfactory bulb

Anterior olfactory nucleus �� Skoglösa et al., 1999c
Cerebral cortex

Cingulate cortex �� –/� � Köves et al., 1991, 1994b; Kivipelto et al., 1992;
Mikkelsen et al., 1994; Piggins et al., 1996; Skoglösa et
al., 1999c

Cortex extract �� Hannibal et al., 1995a
Endopyriform nucleus � – Köves et al., 1994b
Entorhinal cortex � � Köves et al., 1991, 1994b
Frontal cortex � � Ghatei et al., 1993; Mikkelsen et al., 1994; Skoglösa et

al., 1999c
Hind limb area � Köves et al., 1994b
Olfactory area �� Hannibal, 2002
Neocortical area �� Hannibal, 2002

Septum
Lateral septal nucleus – �� Köves et al., 1991, 1994b; Piggins et al., 1996
Septofimbrial nucleus – � Köves et al., 1991
Septohippocampal nucleus – � Köves et al., 1994b

Amygdaloid complex �� � Skoglösa et al., 1999c; Hannibal, 2002
Basal lateral nucleus –/� –/� Köves et al., 1991; Piggins et al., 1996
Medial nucleus –/� –/� Köves et al., 1991; Piggins et al., 1996
Bed nucleus of the stria terminalis –/�� ��/��� Köves et al., 1991, 1994b; Piggins et al., 1996; Kozicz et

al., 1997
Central amygdaloid nucleus, lateral div. – �� Köves et al., 1991, 1994b; Kivipelto et al., 1992; Piggins

et al., 1996
Central amygdaloid nucleus, medial div. – �� Kivipelto et al., 1992; Piggins et al., 1996
Lateral amygdaloid nucleus � – Köves et al., 1991, 1994b
Medial amygdaloid nucleus �� Murase et al., 1995

Hippocampal formation
CA1 � –/�� � Köves et al., 1994b; Piggins et al., 1996; Skoglösa et al.,

1999c; Hannibal, 2002
CA2 � –/�� � Köves et al., 1994b; Piggins et al., 1996; Skoglösa et al.,

1999c; Hannibal, 2002
CA3 � –/�� � Köves et al., 1994b; Piggins et al., 1996; Skoglösa et al.,

1999c; Hannibal, 2002
Dentate gyrus �� –/�� � Köves et al., 1994b; Murase et al., 1995; Piggins et al.,

1996; Skoglösa et al., 1999c; Hannibal, 2002
“Middle layer” �� �� Köves et al., 1991

Diagonal band of Broca � � Köves et al., 1994b
Medial forebrain bundle � � Köves et al., 1994b
Lamina terminalis

Organum vasculosum � Hannibal, 2002
Diencephalon
Epithalamus

Lateral habenular nucleus ��� – � Köves et al., 1991, 1994b; Skoglösa et al., 1999c)
Pineal gland �� Møller et al., 1999

Thalamus
Central medial nucleus – �� Köves et al., 1991, 1994b
Mediodorsal nucleus �� – �� Köves et al., 1991, 1994b; Skoglösa et al., 1999c
Paraventricular nucleus, post. part �� � �� Köves et al., 1991, 1994b; Skoglösa et al., 1999c

Hypothalamus
Anterior commissure – �� Köves et al., 1991, 1994a,b; Hannibal, 2002
Anterior commissural nucleus �� – Köves et al., 1991, 1994a,b
Anterior hypothalamic area –/� –/�� Köves et al., 1994a,b; Piggins et al., 1996; Hannibal, 2002
Arcuate nucleus �� –/�� –/�� Kivipelto et al., 1992; Köves et al., 1994a,b; Murase et al.,

1995; Piggins et al., 1996; Das et al., 2007
Dorsomedial nuclei �� Das et al., 2007
Hypothalamic extract ��� Ghatei et al., 1993; Hannibal et al., 1995a
Intermediate hypothalamus nucleus �� Hannibal et al., 1995b; Hannibal, 2002
Lateral anterior hypothalamic nucleus �� Hannibal et al., 1995b
Lateral hypothalamic area –/�� –/� Hannibal et al., 1995b; Piggins et al., 1996; Das et al.,

2007
Habenular nuclei �� �� Hannibal, 2002
Medial preoptic area �� Hannibal et al., 1995b; Das et al., 2007
Mediobasal hypothalamus �� �� Dürr et al., 2007
Supramammillary nuclei �� Das et al., 2007
Ventromedial nuclei �� �� Dürr et al., 2007; Das et al., 2007

Ventricular system
Subfornical organ � Hannibal, 2002
Median eminence, internal zone – �� Köves et al., 1991, 1994a,b; Kivipelto et al., 1992; Kimura

et al., 1994; Tamada et al., 1994; Hannibal et al.,
1995b; Mikkelsen et al., 1995

Median eminence, external zone – �� Köves et al., 1991, 1994a,b; Kivipelto et al., 1992; Kimura
et al., 1994; Tamada et al., 1994; Hannibal et al.,
1995a; Hannibal et al., 1995b; Mikkelsen et al., 1995;
Piggins et al., 1996
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anterior preoptic area, the ventral magnocellular preop-
tic nucleus, the suprachiasmatic nucleus (SCN), the ven-
tral hypothalamic nucleus, and the posterior tubercle
(Yon et al., 1992, 2001)]. Likewise, in the primitive te-
leost fish Anguilla anguilla, PACAP-containing neurons
are primarily located in the parvo- and magnocellular
subdivisions of the preoptic nucleus (Montero et al.,
1998).

The distributions of PACAP and VIP in the CNS are
clearly different (Masuo et al., 1993). For instance, in the
thalamus, a few VIP-positive fibers are found running
up the wall of the third ventricle, whereas a dense net-
work of PACAP fibers is observed in the central thalamic
nuclei (Köves et al., 1991). In the bed nucleus of the stria
terminalis, PACAP-containing fibers seem to surround
unstained, round-shaped neuronal cell bodies, whereas

VIP fibers are homogeneously distributed. Numerous
PACAP-immunoreactive fibers are also found in the lat-
eral septum, where only a few VIP fibers are observed
(Köves et al., 1991). In magnocellular neurons, PACAP
but not VIP is colocalized with oxytocin (Köves et al.,
1994a). Consistent with this observation, in the poste-
rior pituitary, PACAP does not colocalize with VIP (Ve-
reczki et al., 2003). In the brainstem, VIP-positive cells
are present in the mesencephalic periaqueductal gray
and the dorsal and linear raphe nuclei, whereas PACAP
neurons are abundant in the PVN and the dorsal vagal
complex. In contrast, both PACAP and VIP-immunore-
active fibers seem to innervate the wall of cerebral blood
vessels (Jansen-Olesen et al., 1994).

Taken together, these data indicate that although the
highest amounts of PACAP occur in the hypothalamus

TABLE 1—Continued.

Structures mRNA Cell Bodies Fibers References

Paraventricular nucleus �� �/��� �� Köves et al., 1991, 1994a,b; Kivipelto et al., 1992; Kimura
et al., 1994; Tamada et al., 1994; Hannibal et al.,
1995a,b

Perifornical nucleus � � Köves et al., 1991
Periventricular nucleus � �/��� Köves et al., 1991, 1994a,b; Kivipelto et al., 1992;

Hannibal et al., 1995a; Piggins et al., 1996
Tuber cinereum �� �� Piggins et al., 2001
Ventromedial hypothalamic nucleus ��� �� ��� Hannibal et al., 1995a; Skoglösa et al., 1999c

Mesencephalon
Central gray – � Kivipelto et al., 1992
Periaqueductal white matter � Tajti et al., 2001
Pretectum � Hannibal, 2002
Ventrolateral periaqueductal gray �� Das et al., 2007

Metencephalon
Cerebellum � Skoglösa et al., 1999b

Cerebellum extract –/�� Ghatei et al., 1993; Hannibal et al., 1995a
Granular layer – – –/�� Kivipelto et al., 1992; Mikkelsen et al., 1994; Nielsen et

al., 1998b
Molecular layer – – –/�� Kivipelto et al., 1992; Mikkelsen et al., 1994; Nielsen et

al., 1998b
Purkinje layer –/� –/�� –/� Kivipelto et al., 1992; Mikkelsen et al., 1994; Nielsen et

al., 1998b; Skoglösa et al., 1999b; Hannibal, 2002
Cochlear nuclei � Kawano et al., 2001; Hannibal, 2002

Choroid plexus � Hannibal, 2002
Myelencephalon
Brainstem

Brainstem extract –/�� Ghatei et al., 1993; Hannibal et al., 1995a
Locus ceruleus � Tajti et al., 2001; Ahnaou et al., 2006; Farnham et al.,

2008
Pontine nucleus � � Hannibal, 2002; Ahnaou et al., 2006
Lateral parabrachial nucleus � � � Hannibal, 2002
Vagal complex � � Hannibal, 2002

Medulla oblongata
A1 noradrenergic cells � Légrádi et al., 1994
Nucleus ambiguus �� Légrádi et al., 1994
Area postrema – �� Légrádi et al., 1994; Hannibal, 2002
Caudal raphe nuclei �� Légrádi et al., 1994
Dorsal vagal nucleus �� �� Légrádi et al., 1994
External cuneate nucleus �� Légrádi et al., 1994
Hypoglossal nucleus � � Légrádi et al., 1994
Magnocellular lateral reticular nucleus � Légrádi et al., 1994
Pyramidal tract � Légrádi et al., 1994
Raphe obscurus nucleus � � Légrádi et al., 1994
Raphe pallidus nucleus � �� Légrádi et al., 1994
Solitary nucleus commissural sub. �� �� Légrádi et al., 1994; Hannibal, 2002
Solitary nucleus medial subnucleus �� �� Légrádi et al., 1994; Hannibal, 2002
Spinal trigeminal nucleus caudal sub. – ��� Légrádi et al., 1994; Hannibal, 2002
Ventral medullary surface �� Légrádi et al., 1994
Ventrolateral medulla �� Légrádi et al., 1994

div., division; post., posterior; sub., subnucleus.
The symbols provide a semi-quantitative evaluation of the density of PACAP mRNA and PACAP- immunoreactive cell bodies and fibers: ���, high density; ��, moderate

density; �, low density; –, no hybridization signal or no immunoreactivity.
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(Arimura et al., 1991), substantial concentrations of the
peptide are also found in many other brain regions,
including the cerebral cortex, the hippocampus, the thal-
amus, the striatum, the nucleus accumbens, the sub-
stantia nigra, the locus ceruleus, and the pineal gland
(Table 1) (Köves et al., 1991; Ghatei et al., 1993; Palko-
vits et al., 1995).

F. Distribution of Pituitary Adenylate Cyclase-
Activating Polypeptide in Peripheral Organs

In peripheral tissues, as in the brain, PACAP38 is by
far the major molecular form, but the proportions of
PACAP27 and PACAP38 vary between the different or-
gans (Arimura et al., 1991). For instance, in the colon,
PACAP27 represents 30% of the total immunoreactivity,
whereas in the testis, PACAP27 is hardly detectable
(Arimura et al., 1991). The occurrence of different pro-
portions of the two peptides in various tissues is proba-
bly attributable to the existence of different sets of PC
enzymes.

The presence of PACAP mRNA and PACAP has been
detected in most endocrine glands in rat (Table 2). In
particular, PACAP is found in the different lobes of the
pituitary gland (Rawlings and Hezareh, 1996; Arimura,
1998). In the anterior pituitary, PACAP is observed in a
subpopulation of gonadotrope cells (Mikkelsen et al.,
1995; Köves et al., 1998). In the ventral part of the
neural lobe, PACAP is contained in nerve fibers with
large terminal boutons (Mikkelsen et al., 1995). At the
ultrastructural level, PACAP-LI seems to be located in
dense-core granules contained in neurosecretory fibers
(Kimura et al., 1994). PACAP-immunoreactive elements
are also found in the gonads (Shioda et al., 1994; Han-
nibal and Fahrenkrug, 1995), adrenal gland (Arimura
et al., 1991; Mazzocchi et al., 2002), parathyroid (Luts
and Sundler, 1994), and endocrine pancreas (Table 2)
(Arimura and Shioda, 1995; Love and Szebeni, 1999). In
rat, the highest amounts of PACAP are found in the
testis. In fact, the concentration of PACAP in the testis
is higher than in the whole brain and exceeds the con-
centration of any other known peptides (Arimura et al.,
1991). In situ hybridization studies have shown that
PACAP mRNA is present in germ cells and not in Sertoli
or Leydig cells (Shioda et al., 1994; Hannibal and Fahr-
enkrug, 1995). Electron microscopic studies indicate
that PACAP is located in acrosoma caps and granules of
primary spermatocytes, and later on in mature sperma-
tids (McArdle, 1994; Shioda et al., 1994; Hannibal and
Fahrenkrug, 1995; Hannibal et al., 1995b; Li et al.,
2004). The expression of PACAP in germ cells decreases
after ethanol exposure (Koh et al., 2006). In the ovary,
the concentration of PACAP is much lower than in the
testis, and the peptide seems to be contained in nerve
fibers (Steenstrup et al., 1995). In the uterus, decidual
endometrium contains significant amounts of PACAP
mRNA (Spencer et al., 2001). The occurrence of PACAP
and PACAP mRNA has been reported in both rat and

human placenta. In human, PACAP-LI is associated
with stromal cells of both stem and terminal placental
villi (Scaldaferri et al., 2000). In rat, PACAP-containing
cells are present in the placental labyrinth and in the
villous-like structures of the intraplacental yolk sac
(Scaldaferri et al., 2000). In the human placenta, mod-
erate concentrations of PACAP mRNA are expressed in
stroma cells of stem and terminal villi at 7 and 14 weeks
of gestation, and the density of PACAP mRNA gradually
increases as pregnancy progresses (Koh et al., 2005). In
the rat placenta, as gestation advances, the expression
of PACAP mRNA gradually declines in decidual cells
and increases in chorionic vessels and stromal cells of
chorionic villi within the labyrinth zone (Koh et al.,
2003).

The adrenal gland contains a high concentration of
PACAP (Arimura et al., 1991; Watanabe et al., 1992;
Ghatei et al., 1993). In mammals, PACAP is found in the
adrenal medulla (Shiotani et al., 1995), where it is con-
tained both in chromaffin cells (Holgert et al., 1996) and
in fibers (Frödin et al., 1995; Moller and Sundler, 1996;
Tornøe et al., 2000). In the Italian wall lizard, Podarcis
sicula, PACAP and its mRNA are detected in chromaffin
cells, whereas in the frog adrenal gland, PACAP-LI is
restricted to nerve fibers that contact either chromaffin
cells or steroid-producing cells (Yon et al., 1993a; Val-
iante et al., 2008). It has been suggested that in the rat
and dog adrenal gland, PACAP released from nerve end-
ings contributes to neurally evoked catecholamine re-
lease (Fukushima et al., 2001a; Lamouche and Yamagu-
chi, 2003). Likewise, the parathyroid gland and the
intrapancreatic ganglia are innervated by PACAP-con-
taining fibers (Luts and Sundler, 1994; Filipsson et al.,
1998a; Love and Szebeni, 1999).

Large amounts of PACAP-LI are found in all parts of
the gastrointestinal tract (Arimura et al., 1991; Hauser-
Kronberger et al., 1992; Ghatei et al., 1993; Mao et al.,
1998; Vincze et al., 1999). The presence of PACAP-im-
munoreactive cell bodies has been observed in the my-
enteric ganglia throughout the gastrointestinal tract,
and the existence of intrinsic neurons has been con-
firmed by in situ hybridization (Shen et al., 1992; Han-
nibal et al., 1998). Numerous PACAP-containing nerve
fibers have been visualized along the circular muscle
fibers and in the longitudinal smooth muscle layer of the
esophagus (Uddman et al., 1991a; Köves et al., 1993;
Olsson and Holmgren, 1994). PACAP-LI has also been
detected in various exocrine glands of the alimentary
canal (e.g., the parotid and submandibular glands, the
liver, and the exocrine pancreas) (Arimura et al., 1991;
Fridolf et al., 1992; Moller et al., 1993; Luts and Sundler,
1994). In the urinary bladder, networks of PACAP-im-
munoreactive fibers are found in the vicinity of blood
vessels (Moller et al., 1993; Fahrenkrug and Hannibal,
1998; Zvarova et al., 2005). In the airways, PACAP-
containing fibers innervate smooth muscle bundles and
blood vessels in the trachea as well as small bronchioles
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TABLE 2
Localization and relative abundance of PACAP mRNA and PACAP-like immunoreactivity in rat peripheral tissues

Structures mRNA Cell Bodies Fibers References

Peripheral nervous system
Cardiac ganglia � � � Braas et al., 1998; Chang et al., 2005
Dorsal root ganglia � � �� Mulder et al., 1994; Zhang et al., 1996, 1998;

Jongsma et al., 2000
Myenteric ganglia �� Miampamba et al., 2002
Organ of Corti �� Drescher et al., 2006
Parasympathetic ganglia �� �� Mulder et al., 1995
Spinal cord ganglia � �� Moller et al., 1993; Dun et al., 1996a; Nielsen et

al., 1998a
Spinal cord, dorsal horn � Hannibal, 2002
Spinal cord, ventral horn �� � Hannibal, 2002; Pettersson et al., 2004
Intermediate lateral cell column of spinal cord � � Hannibal, 2002; Farnham et al., 2008
Submucosal ganglia that control ileum � Nagahama et al., 1998
Superior cervical ganglia � �/�� �� Klimaschewski et al., 1996; Brandenburg et al.,

1997; Moller et al., 1997a,b; Nogi et al., 1997a;
Nielsen et al., 1998a

Trigeminal ganglia � �� � Moller et al., 1993; Mulder et al., 1994; Dun et
al., 1996a

Eye
Amacrine cells �� Seki et al., 2000
Ganglion cells of the retina �� Hannibal et al., 1997, 2001b
Inner plexiform layer �� Seki et al., 2000
Nerve fiber layer �� Seki et al., 2000
Retinal papilla �� Hannibal et al., 1997

Endocrine glands
Anterior pituitary –/� –/�� Vigh et al., 1993; Kimura et al., 1994; Mikkelsen

et al., 1995; Köves et al., 1998; Heinzlmann et
al., 2008

FS, GH, PRL, and ACTH cells �� Vigh et al., 1993
TSH, LH, FSH cells � Vigh et al., 1993

Neurohypophysis �� Mikkelsen et al., 1995; Hannibal, 2002
Adrenal gland � Ghatei et al., 1993; Kántor et al., 2002

Cortex – � Frödin et al., 1995; Shiotani et al., 1995
Medulla � –/� –/� Frödin et al., 1995; Shiotani et al., 1995; Dun et

al., 1996b; Moller and Sundler, 1996; Nielsen
et al., 1998a

Chromaffin cells � –/� –/� Tabarin et al., 1994; Dun et al., 1996a; Holgert
et al., 1996; Moller and Sundler, 1996; Shioda
et al., 2000

Subcapsular region � Holgert et al., 1996
Endocrine pancreas �� �� Filipsson et al., 1998a; Hannibal and

Fahrenkrug, 2000; Petruzzo et al., 2001;
Portela-Gomes et al., 2003

Mammary gland �� Skakkebaek et al., 1999
Gonads � Fahrenkrug and Hannibal, 1996

Testis �� Hurley et al., 1995; Kántor et al., 2002
Early germ cells �� Kononen et al., 1994; Fahrenkrug et al., 1995
Spermatogonia and primary spermatocytes �� �� Shioda et al., 1994; Hannibal and Fahrenkrug,

1995
Acrosomal caps and acrosomes of immature

spermatids
� ��� Shioda et al., 1994; Hannibal and Fahrenkrug,

1995; Yanaihara et al., 1998
Mature spermatids –/� Hannibal and Fahrenkrug, 1995; Yanaihara et

al., 1998; Li et al., 2004
Epididymal spermatozoa – Leung et al., 1998
Sertoli cells – – Kononen et al., 1994; Shioda et al., 1994;

Hannibal and Fahrenkrug, 1995
Leydig cells – – Shioda et al., 1994
Epithelial cells from epididymal tubules � Leung et al., 1998

Ovary � � Fahrenkrug and Hannibal, 1996; Gräs et al.,
1996; Scaldaferri et al., 1996; Lee et al., 1999a

Granulosa and cumulus cells �� �� Gräs et al., 1996; Shioda et al., 1996a
Placenta �� Scaldaferri et al., 2000

Chorionic vessels �� Koh et al., 2003
Decidual cells �� Koh et al., 2003
Stromal cells �� Koh et al., 2003

Urinary tract
Epithelium – �� Fahrenkrug and Hannibal, 1998
Smooth musculature �� Radziszewski et al., 1996; Fahrenkrug and

Hannibal, 1998
Urinary bladder �� Moller et al., 1993; Fahrenkrug and Hannibal,

1998
Urethra � Ishizuka et al., 1995; Radziszewski et al., 1996

Uterus
Decidual endometrium �� Spencer et al., 2001
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in the lung (Cardell et al., 1991; Uddman et al., 1991b;
Hauser-Kronberger et al., 1996; Shigyo et al., 1998). In
the immune system, PACAP is expressed in various
lymphoid tissues, including the thymus, spleen and du-
odenal mucosa (Gaytan et al., 1994; Abad et al., 2002)
and in peritoneal macrophages (Pozo et al., 1997). The
occurrence of PACAP mRNA has been demonstrated in
the superior cervical ganglion (Nogi et al., 1997b). De-
polarization of these neurons stimulates the release of
PACAP27 and PACAP38 and causes a concomitant in-
crease of PACAP mRNA and peptide (Brandenburg et
al., 1997). A few PACAP-positive perikarya are also
present in the sphenopalatine and otic ganglia (Uddman
et al., 1991b, 1999). In the eye, PACAP-LI is present in
fibers innervating the iris sphincter and in cell bodies
scattered in the ciliary ganglia (Wang et al., 1995; Elsås
and White, 1997; Olianas et al., 1997; Samuelsson-Al-
mén and Nilsson, 1999). In the retina, PACAP is found
in fibers of the ganglion cell and nerve fiber layer (Han-
nibal et al., 1997; Seki et al., 1997, 2000) and in ama-
crine cells in the inner nuclear layer (Seki et al., 2000).

In peripheral organs, in contrast to the CNS, PACAP
and VIP often seem to be coexpressed by the same cells.
For instance, colocalization of PACAP and VIP has been
demonstrated in cell bodies and nerve fibers in the hu-
man and sheep esophageal sphincter (Uddman et al.,
1991a; Ny et al., 1995), in the human and chicken gut
(Sundler et al., 1992), and in the ovine respiratory tract
(Uddman et al., 1991b). Nerve fibers containing both
PACAP and VIP are also found in other tissues, notably
in the parathyroid glands of cat and sheep (Luts and
Sundler, 1994) and in the gill arch of the goldfish C.
auratus (de Girolamo et al., 1998).

To summarize, in peripheral organs, the highest con-
centrations of PACAP are found in the testis, the adre-
nal gland, the gastrointestinal tract, and the lymphoid

tissues (Arimura et al., 1991). PACAP is frequently
found in sensory and parasympathetic neurons (Mulder
et al., 1995). PACAP38 is much more abundant than
PACAP27 in all tissues. Although PACAP is often local-
ized in nerve cell bodies and fibers, PACAP is also de-
tected in non neuronal cells such as lymphocytes (Del-
gado et al., 2002c) or germ cells (Fahrenkrug et al.,
2003).

G. Pituitary Adenylate Cyclase-Activating Polypeptide
in Tumor Cells

The PACAP gene is differentially expressed in brain
tumors. PACAP mRNA is present in most gliomas but is
detected in only one fifth of meningiomas (Vertongen
et al., 1995a; Jaworski, 2000). PACAP mRNA and
PACAP-LI are abundant in human neuroblastomas and
breast carcinoma (Suzuki et al., 1993; Takahashi et al.,
1993a; Vertongen et al., 1997a; Waschek et al., 1997;
García-Fernández et al., 2004; Isobe et al., 2004).
PACAP and VIP are frequently colocalized and intensely
expressed in pancreatic carcinoma, neuroblastoma, and
pheochromocytoma (Fahrenkrug et al., 1995). VIP is
known to exert an autocrine stimulation of neuroblas-
toma cell growth and differentiation (Pence and Shorter,
1993; Lelièvre et al., 1998b). The presence of PACAP
suggests that it could also control neuroblastoma tumor
cell proliferation (O’Dorisio et al., 1992; Pence and
Shorter, 1992). Most pituitary tumors contain large
amounts of PACAP (Takahashi et al., 1993a; Takahashi
et al., 1993b). Because pituitary cells are programmed to
proliferate in response to cAMP (Lin et al., 1992), it is
conceivable that in pituitary adenomas, PACAP may
contribute to tumorigenesis (Spada et al., 1996). Over-
expression of PACAP has also been reported in ovarian
tumors (Odum and Fahrenkrug, 1998), pheochromocy-

TABLE 2—Continued.

Structures mRNA Cell Bodies Fibers References

Respiratory tract
Larynx �� Moller et al., 1993
Lung �� Uddman et al., 1991b; Moller et al., 1993
Nose �� Moller et al., 1993
Tongue �� Moller et al., 1993
Tracheobronchial wall �� Uddman et al., 1991b; Moller et al., 1993

Digestive system
Exocrine pancreas �� Fridolf et al., 1992
Smooth muscle � �� �/�� Uddman et al., 1991a; Sundler et al., 1992;

Köves et al., 1993; Hannibal et al., 1998;
Miampamba et al., 2002

Submucous ganglia of the intestine � �� Hannibal et al., 1998; Nagahama et al., 1998
Lymphoid tissues

Bone marrow � Gaytan et al., 1994
Duodenal mucosa � Gaytan et al., 1994
Lymph nodes �� Gaytan et al., 1994
Peritoneal macrophages � Pozo et al., 1997
Spleen �� Gaytan et al., 1994
Thymus � Gaytan et al., 1994

Skin
Dermal neurons �� Odum et al., 1998

FS, folliculostellate; ACTH, adrenocorticotropin.
The symbols provide a semi-quantitative evaluation of the density of PACAP mRNA and PACAP-immunoreactive cell bodies and fibers: ���, high density; ��, moderate

density; �, low density; –, no hybridization signal or no immunoreactivity.
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tomas (Takahashi et al., 1993b), and prostate cancer cell
lines (Gutiérrez-Cañas et al., 2003).

H. Ontogenesis of Pituitary Adenylate Cyclase-
Activating Polypeptide

The content of PACAP during development has been
studied in detail in the CNS of rodents (Fig. 5) (Shuto et
al., 1996; Waschek et al., 1998; Skoglösa et al., 1999b,c;
Jaworski and Proctor, 2000; Watanabe et al., 2007). In
the mouse embryo, PACAP mRNA is present in the
brain as early as embryonic day (E) 9.5, and the mRNA
level increases during the prenatal period to reach a
maximum at birth (Shuto et al., 1996; Waschek et al.,
1998). The PACAP gene is widely expressed in the
mouse neural tube at E10.5 (Shuto et al., 1996; Waschek
et al., 1998). PACAP mRNA is observed in differentiat-
ing neurons, suggesting that PACAP may control prolif-
eration or differentiation of neuroblasts in the neural
tube. In the brain of the rat embryo, PACAP mRNA is
detected as early as E12 in the anterior mesencephalic
tegmental neuroepithelium. At E14, a high density of
PACAP mRNA is observed throughout the neuraxis,
notably in the hypothalamic neuroepithelium. By E18,
the PACAP gene is expressed in the pituitary, in discrete

thalamic and brainstem nuclei, and in the spinal cord
(Fig. 5A) (Jaworski and Proctor, 2000). After birth, high
concentrations of PACAP mRNA are present in the hip-
pocampus, hypothalamus, and pontine gray nucleus
(Fig. 5B) (Jaworski and Proctor, 2000). PACAP is readily
measurable by radioimmunoassay in the rat brain at
E14 (Masuo et al., 1994; Tatsuno and Arimura, 1994;
Tatsuno et al., 1994). Immunoreactive nerve fibers are
observed in the spinal cord and ganglia at E16 (Nielsen
et al., 1998a). In the septum and hypothalamus, the
PACAP content increases gradually from birth to post-
natal day (P) 60. In the cortex, hippocampus, thalamus,
and midbrain, PACAP levels increase more rapidly from
P10 to P20 and reach a plateau by P30 (Masuo et al.,
1994). In the striatum and cerebellum, PACAP content
is very high at birth and during the first postnatal weeks
and then decreases gradually from P20 to adulthood. In
the developing rat and mice cerebellum, PACAP is ex-
pressed in Purkinje cells (Nielsen et al., 1998b; Skoglösa
et al., 1999b; Cameron et al., 2007), which are known to
regulate granule neurons survival.

PACAP is expressed at high levels in the fetal pitu-
itary, where it could stimulate LH secretion and restrain
FSH synthesis (Moore et al., 2009). PACAP levels would

PACAP PAC1-R CresylA

B PACAP PAC1-R

P14

P60

E18

FIG. 5. Microphotographs showing PACAP and PAC1-R mRNA expression in the CNS during development and in adulthood. A, sagittal sections
of E18 rat embryos. Intense PACAP expression is observed in postmitotic cells in the cerebral aqueduct (CA); pituitary (Pit), discrete thalamic and
brainstem nuclei, and the spinal cord. PAC1-R expression is observed in the olfactory bulb (OB), thalamus (Thl), cerebellar primordium, the ganglionic
eminence, and the neuroepithelium surrounding the lateral (LV) and third (3v) ventricles. B, sagittal sections of P14 and P60 rat brains. PACAP
expression peaks at P14, whereas at the same age, PAC1-R expression starts to decline, except in the dentate gyrus and migratory path of the olfactory
bulb. AON, olfactory nucleus; GCL, granule cell layer; Hy, hypothalamus; IC, inferior colliculus; IO, inferior olivary complex; NST, nucleus of the
solitary tract; PN, pontine nuclei; RMS, migratory path to the olfactory bulb; SC, superior colliculi; SeN, septal nuclei; SuN, substantia nigra; Vm,
motor trigeminal, VsP, spinal trigeminal nucleus. [Reprinted from Jaworski DM and Proctor MD (2000) Developmental regulation of pituitary
adenylate cyclase-activating polypeptide and PAC(1) receptor mRNA expression in the rat central nervous system. Brain Res Dev Brain Res
120:27–39. Elsevier Science.]
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then decline after birth to allow FSH and GnRH in-
crease. The presence of PACAP has also been reported in
the human foregut derivates during ontogenesis (Vincze
et al., 2001). In 18- and 20-week-old fetuses, PACAP-LI
is present in the developing Lieberkühn’s glands and
epithelial cells of the stomach (Vincze et al., 2001). The
presence of PACAP in the growing end of the epithelial
invaginations suggests that the peptide could play a
role in proliferation and/or differentiation of foregut
derivates.

In conclusion, the early expression of PACAP in nu-
merous tissues during development supports the con-
cept that PACAP plays crucial roles in the histogenesis
of various organs. In particular, the occurrence of
PACAP in postmitotic parenchyma during embryonic
and early postnatal development is consistent with the
functions that the peptide exerts in the control of prolif-
eration and/or differentiation of neuroblasts (see section
IV.A).

I. Phylogenetic Evolution of Pituitary Adenylate
Cyclase-Activating Polypeptide

The primary structure of PACAP has been determined
in several mammalian species (Fig. 6), including sheep
(Miyata et al., 1989), rat (Ogi et al., 1990), human (Oh-
kubo et al., 1992), mouse (Okazaki et al., 1995), pig
(Kollers et al., 2006), and cattle (Sayasith et al., 2007).
The sequence of PACAP has also been established in
representative species of nonmammalian vertebrates,
notably the chicken Galus domesticus (McRory and Sher-
wood, 1997), the lizard Podarcis sicula (Valiante et al.,

2007), the frogs R. ridibunda (Chartrel et al., 1991) and
Xenopus laevis (Hu et al., 2000), the lungfish Protopterus
dolloi (Lee et al., 2009), the salmon Oncorhynchus nerka
(Parker et al., 1993), the catfish Clarias macrocephalus
(McRory et al., 1995), the stargazer Uranoscopus japoni-
cus (Matsuda et al., 1997), the channel catfish Ictalurus
punctatus (Small and Nonneman, 2001), the Arctic gray-
ling Thymallus arcticus, the yellowtail flounder Pleu-
ronectes ferrugineu, the Atlantic halibut Hippoglossus
hippoglossus, the Atlantic cod Gadus morhua (Xu and
Volkoff, 2009), the sturgeon Ascipenser transmontanus
(Adams et al., 2002), the zebrafish Danio rerio (Krueckl
et al., 2003; Wang et al., 2003), the seabream Sparus
aurata (Cardoso et al., 2007a), the fugu Takifugu ru-
bripes (Cardoso et al., 2007a), the African cichlid fish
Haplochromis burtoni (Grone et al., 2007), and the grass
carp Ctenopharyngodon idella (Sze et al., 2007). The
N-terminal 1-to-27 region of PACAP, which is responsi-
ble for the biological activity of the peptide, has been
fully conserved in all vertebrate species, except the
chicken, sturgeon, and stargazer/flounder/halibut, with
one amino acid substitution at positions 2, 15, and 20,
respectively (Fig. 6). In contrast, the C-terminal portion
of PACAP, which is not crucial for the biological activity
of the peptide, is more variable (Fig. 6). The fact that
evolutionary pressure has acted to strongly preserve the
bioactive sequence of PACAP clearly indicates that the
peptide must exert important physiological functions.

Until recently, GHRH genes had been identified only
in mammals and it was thus hypothesized that non-
mammalian GHRH-like peptides were encoded in the
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FIG. 6. Comparison of the amino acid sequences of PACAP from various vertebrate species and a protochordate. Percentages indicate amino acid
identity between PACAP38 from different nonmammalian vertebrates and mammalian PACAP38 and between tunicate PACAP27 and mammalian
PACAP27. —, amino acids identical to those of human, cattle, sheep, pig, mouse, rat, and guinea pig PACAP. The potential cleavage-amidation sites
are underlined.
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same gene with PACAP (Hoyle, 1998; Montero et al.,
2000; Sherwood et al., 2000). Recent data, however, in-
dicate that in nonmammalian vertebrates, as in mam-
mals, GHRH is encoded by a separate gene distinct from
the PACAP gene (Fig. 3) (Lee et al., 2007). The GHRH-
like peptides previously identified in several species of
fish are therefore orthologs of mammalian PRPs. Based
on chromosome synteny comparisons and gene predic-
tion from various genome projects, it has been proposed
that the PACAP/VIP/GHRH peptides were evolved from
two to three rounds of genome duplication that were
coincident with the diversification of species in early
vertebrate evolution (Lee et al., 2007). According to this
scenario, after the first and second rounds of gene du-
plication (1R and 2R), which are estimated to have oc-
curred between approximately 800 and 500 million
years ago (Flajnik and Kasahara, 2001; Vandepoele et
al., 2004), the ancestral gene gave rise to four paralogous
genes (i.e., PRP-PACAP, PHI-VIP, GHRH, and secretin)
(Fig. 3). The duplicated PRP-PACAP and PHI-VIP genes
found in many fish species were produced by a teleost-
specific genome third round of duplication (3R) that
occurred approximately 320 million years ago (Fig. 3)
(Van de Peer et al., 2003; Meyer and Van de Peer, 2005).
Although there is no published sequence of secretin in
fish, secretins and their receptors have been recently
identified in two frog species, X. laevis and Rana tigrina
rugulosa (B. K. C. Chow, unpublished data). Fish PRPs
(previously known as GHRH-like peptides) can structur-
ally be classified into PRPsalmon-like and PRPcatfish-
like (Tam et al., 2007); it is noteworthy that a receptor
highly specific for the PRPsalmon-like peptide is present
in goldfish (Chan et al., 1998). Because the PRPsalmon-
like receptor is expressed in a tissue-specific manner,
notably in the pituitary, at least in goldfish (Chan et al.,
1998), it is highly possible that the PRPsalmon-like pep-
tide in nonmammalian vertebrates is functional (Tam et
al., 2007), although the physiological importance of this
peptide remains to be determined. In contrast, in mam-
mals, PRP is substantially shorter than fish PRPs, and
no PRP-like receptor has been identified in mammalian
genomes (Lee et al., 2007), suggesting that PRP has lost
its function in the mammalian lineage.

Taken together, phylogenetic studies have revealed
the presence of novel GHRHs in nonmammalian verte-
brates and, based on that, a revised scheme for evolution
of PACAP, VIP, and GHRH was proposed. Moreover, the
remarkable conservation of the primary structure of
PACAP in the vertebrate lineage suggests that this pep-
tide must be involved in some vital biological functions
(see section IV).

III. Pituitary Adenylate Cyclase-Activating
Polypeptide Receptors

The high degree of sequence homology between
PACAP and VIP suggested that the biological effects of

the two peptides could be mediated through common
receptors. But in fact the situation is more complex
because three PACAP receptors have been cloned in
vertebrates: one that binds PACAP with high affinity
and has a much lower affinity for VIP, and two that
recognize PACAP and VIP equally well. So numerous
studies have now been conducted to determine the spa-
tiotemporal expression of these three receptors in the
CNS and in peripheral organs and to identity the sig-
naling pathways that are activated by PACAP.

A. Pharmacological Characterization of Pituitary
Adenylate Cyclase-Activating Polypeptide Receptors

Two classes of PACAP binding sites have been char-
acterized on the basis of their relative affinities for
PACAP and VIP (Table 3). Type I binding sites, which
have been originally characterized in the anterior pitu-
itary and hypothalamus using 125I-PACAP27 as a radio-
ligand, exhibit high affinity for PACAP38 and PACAP27
(Kd � 0.5 nM) and much lower affinity for VIP (Kd � 500
nM) (Cauvin et al., 1990; Gottschall et al., 1990, 1991;
Lam et al., 1990; Suda et al., 1992). Type II binding
sites, which are abundant in various peripheral organs,
including the lung, duodenum, and thymus, possess sim-
ilar affinity for PACAP and VIP (Kd � 1 nM) (Gottschall
et al., 1990; Lam et al., 1990). Subtle differences in the
ability of PACAP38 and PACAP27 to displace 125I-
PACAP27 from its recognition sites in the CNS suggest
that the C-terminal extremity of PACAP must contrib-
ute to the binding of the peptide to its receptors (Cauvin
et al., 1991; Robberecht et al., 1991b). Likewise, type II
binding sites have been subdivided into two classes de-
pending on their affinity for secretin (Hubel, 1972) and
helodermin (Christophe et al., 1986): classic VIP binding
sites exhibit low affinity for secretin (Christophe et al.,
1981; Robberecht et al., 1982, 1988), whereas heloder-
min-preferring binding sites possess higher affinity for
helodermin than for VIP or PACAP and no affinity for
secretin (Robberecht et al., 1984, 1988; Gourlet et al.,
1991a; Shima et al., 1996; Solano et al., 1996; Laburthe
and Couvineau, 2002; Laburthe et al., 2007). Character-
ization of 125I-PACAP27 binding on membrane prepara-
tions indicated that the expression of type I and II bind-
ing sites is not cell-specific and that most of the tissues
possess various proportions of each receptor subtype
(Tatsuno et al., 1990; Robberecht et al., 1991a; Nguyen
et al., 1993).

B. Biochemical Characterization of Pituitary Adenylate
Cyclase-Activating Polypeptide Receptors

Type I PACAP binding sites were first isolated from a
tumoral cell line derived from the rat exocrine pancreas
(Buscail et al., 1990). Cross-linking of 125I-PACAP27 to
cell membrane preparations made it possible to isolate a
65-kDa protein (Buscail et al., 1990). In the porcine
brain, type I PACAP binding sites exhibit an apparent
molecular mass of 60 kDa (Schäfer and Schmidt, 1993;
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Schäfer et al., 1994). The extent of N-glycosylation of
type I PACAP binding sites seems to be rather low
compared with other glycosylated receptors (Klueppel-
berg et al., 1989; Feldman et al., 1990), though it is
similar to those of type II PACAP or glucagon receptors
(Iwanij and Hur, 1985; Raymond and Rosenzweig,
1991). In the bovine brain, type I PACAP binding sites
have a molecular mass of 57 kDa and are coupled to a Gs
protein (Ohtaki et al., 1990, 1993). Type I PACAP bind-
ing sites purified from bovine brain membranes were
used to sequence the N-terminal portion of the protein
(Ohtaki et al., 1993). The amino acid sequence was sub-
sequently used to clone the type I PACAP receptor (see
section III.C).

Type II PACAP binding sites have been isolated in
pure form from bovine brain membranes (Ohtaki et al.,
1990). The protein has an apparent molecular mass of 45
kDa, very similar to that previously reported for the VIP
receptor (Couvineau et al., 1986a,b). Biochemical char-
acterization revealed differences in the degree of N-
glycosylation of type II binding sites according to tissues
or species (Fabre et al., 1993; Laburthe et al., 1996).

C. Cloning of Pituitary Adenylate Cyclase-Activating
Polypeptide Receptors

Three PACAP receptors have been cloned so far and
have been termed PAC1, VPAC1, and VPAC2 receptors
(Table 3) by the International Union of Pharmacology
according to their relative affinity for PACAP and VIP
(Harmar et al., 1998).

The PAC1 receptor (PAC1-R) cDNA sequence has
been first determined from a pancreatic acinar carci-
noma cell line (Pisegna and Wank, 1993). This PAC1-R
cDNA, which encodes a 495-amino acid protein with
seven putative membrane spanning domains, exhibits a
high degree of sequence identity with the glucagon, se-
cretin, and calcitonin receptor cDNAs. PAC1-R have
subsequently been cloned in human (Ogi et al., 1993;
Pisegna and Wank, 1996; Pisegna et al., 1996), bovine
(Miyamoto et al., 1994), rat (Hashimoto et al., 1993;
Hosoya et al., 1993; Morrow et al., 1993; Spengler et al.,
1993; Svoboda et al., 1993), and mouse (Hashimoto et
al., 1996b). The PAC1-R has also been cloned in several
nonmamalian species (Wong et al., 1998; Alexandre et
al., 1999; Hu et al., 2000; Cardoso et al., 2007b). Five
variants resulting from alternative splicing in the third
intracellular loop region have been identified in rat
(Spengler et al., 1993). The splice variants are charac-
terized by the absence (short variant, S) or presence of
either one or two cassettes of 28 amino acids (hip or hop1
variant) or 27 amino acids (hop2 variant; Journot et al.,
1994). The presence of the hip cassette impairs AC stim-
ulation and abolishes phospholipase C (PLC) activation,
suggesting that the various cassettes are involved in the
differential coupling to second messengers (Table 3).
PAC1-R can also activate other intracellular messen-
gers, such as phospholipase D (McCulloch et al., 2001;
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Dickson and Finlayson, 2009). A very short splice vari-
ant of PAC1-R, characterized by a 21-amino acid dele-
tion in the N-terminal extracellular domain (Versus),
has also been characterized (Pantaloni et al., 1996;
Dautzenberg et al., 1999; Lutz et al., 2006). The exis-
tence of this 21-amino acid sequence influences the re-
ceptor selectivity for the PACAP38 and PACAP27 iso-
forms and determines the relative potencies of the two
peptides in stimulating PLC. Another PACAP receptor
variant termed PAC1-R transmembrane domain 4 has
been cloned in the rat cerebellum (Chatterjee et al.,
1996). This latter receptor differs from the short variant
of the PAC1-R by discrete sequence substitutions located
in transmembrane domains II and IV. Surprisingly, ac-
tivation of PAC1-R transmembrane domain 4 has no
effect on AC or PLC activity but causes calcium influx
through L-type voltage-sensitive calcium channels (Ta-
ble 3). Other variants that exhibit altered AC activation
have also been reported in frog (Alexandre et al., 2002).
Several reports indicate that PAC1-R undergoes rapid
desensitization in particular through activation of the
protein kinase C (PKC) pathway (Taupenot et al., 1999;
Shintani et al., 2000; Dautzenberg and Hauger, 2001;
Niewiadomski et al., 2002). Some processes such as re-
ceptor internalization or coupling to second messengers
may also be modulated by the interaction with receptors
modifying proteins (Sexton et al., 2006). The mouse
PAC1-R gene spans more than 50 kb and is divided into
18 exons (Aino et al., 1995). The proximal promoter
region has no apparent TATA box but contains a CCAAT
box and two potential Sp1-binding sites that act as tran-
scriptional activators (Dynan and Tjian, 1983; Skak and
Michelsen, 1999). The activity of the promoter is also
controlled by negative regulatory cis-elements and
trans-acting factors such as Zac1 and estrogen receptor
� (Rodríguez-Henche et al., 2002). The rat PAC1-R gene
is localized on chromosome 4 (Cai et al., 1995) and spans
40 kb with 15 exons (Chatterjee et al., 1997), whereas
the human PAC1-R gene is located in region p15 of
chromosome 7 (Brabet et al., 1996). The intron/exon
organization of the PAC1-R gene is very similar to that
of the other members of the secretin receptor family.
Alternative splicing of the PAC1-R gene also occurs in
the untranslated region and could represent a regula-
tory mechanism involved in tissue-selective expression
of the gene and/or in mRNA stability.

The VPAC1 receptor (VPAC1-R) has first been cloned
from a rat lung cDNA library by cross-hybridization
with a secretin receptor cDNA. The rat VPAC1-R cDNA
encodes a 459-amino acid protein (Ishihara et al., 1992)
and exhibits 50% amino acid sequence identity with the
rat PAC1-R (Pisegna and Wank, 1993). The human
VPAC1-R cDNA has been characterized from a HT29
human colonic adenocarcinoma cell line library. The hu-
man VPAC1-R comprises 457 amino acids and possesses
84% sequence identity with the rat VPAC1-R (Sreedha-
ran et al., 1993). The VPAC1-R gene spans 22 kb and is

composed of 13 exons ranging in size from 42 to 1400 bp
(Sreedharan et al., 1995; Pei, 1997). The promoter region
encompasses several potential binding sites for nuclear
factors including Sp1, activator protein-2, or autotu-
morolytic fraction and contains GC-rich sequences (Cou-
vineau et al., 2000). The human VPAC1-R gene is lo-
cated on region p22 of chromosome 3 (Sreedharan et al.,
1995). Selective substitution of amino acids His1783Arg
and Thr3433Lys, Pro, or Ala by directed mutagenesis
results in constitutive activation of VPAC1-R with re-
spect to cAMP production (Gaudin et al., 1998, 1999).
The VPAC1-R has also been cloned in the goldfish C.
auratus (Chow et al., 1997) and the frog R. ridibunda
(Alexandre et al., 1999). The fact that the frog VPAC1-R
exhibits pharmacological characteristics of both VPAC1-R
and VPAC2 receptor (VPAC2-R) in mammals should
help to decipher the structure-activity relationships of
the VIP/PACAP receptor family.

The VPAC2-R has initially been cloned from a rat
pituitary cDNA library (Lutz et al., 1993) and subse-
quently from a mouse �-cell line (Inagaki et al., 1994)
and a human placenta (Adamou et al., 1995) cDNA
library. The rat and human VPAC2-R proteins exhibit
87% amino acid identity (Gagnon et al., 1994; Svoboda et
al., 1994; Adamou et al., 1995). Two VPAC2-R mRNAs of
2.3 and 4.6 kb are expressed in the human skeletal
muscle, heart, brain, placenta, and pancreas (Adamou et
al., 1995). The VPAC2-R gene is located in region q36.3
of chromosome 7 in human (Mackay et al., 1996) and on
chromosome 4 in rat (Cai et al., 1995). The human
VPAC2-R is encoded by 13 exons, and the human gene
spans 117 kb (Lutz et al., 1999). Although VPAC1-R and
VPAC2-R are established to be seven-transmembrane
receptors, a five-transmembrane form resulting from
alternative splicing has also been characterized (Bokaei
et al., 2006). VPAC1-R and VPAC2-R exhibit a similar
efficacy to activate AC after stimulation with either VIP
or PACAP (Shioda et al., 2003). In addition, the two
VPAC receptors may induce the formation of other sec-
ond messengers, notably cyclic GMP (Murthy et al.,
1997).

The diversity of PACAP receptor variants and the
versatility of the signaling pathways that they can acti-
vate, depending on the cell type in which they are ex-
pressed, probably account for the wide spectrum of bio-
logical responses evoked by the peptide, and may
explain some apparently contradictory results. Further
studies on the temporal expression of PACAP receptor
variants at the cellular level, and the development of
new pharmacological agents that can discriminate
among the various receptor subtypes will help to deci-
pher the function of PACAP in each cell type. Because
selective PACAP agonists and antagonists are still lim-
ited, animals lacking either PAC1-R (Jamen et al.,
2000a; Otto et al., 2001) or VPAC2-R (Goetzl et al., 2001)
remain the best models to determine the functional im-
plication of each receptor. Likewise, studies have shown
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that mice overexpressing PAC1-R suffer from hydro-
cephalus (Lang et al., 2006) and exhibit a marked de-
cline in visual acuity (Lang et al., 2009), whereas over-
expression of VPAC2-R in the SCN alters the
rhythmicity of the circadian clock (Shen et al., 2000).

D. Structure-Activity Relationships

A number of PACAP analogs have been synthesized to
identify the molecular determinants responsible for the
recognition and activation of the receptors (Fig. 7) (Bour-
gault et al., 2009a). As previously reported for other
members of the VIP-glucagon-secretin-GHRH super-
family, the N-terminal region of PACAP seems to play a
crucial role for the biological activity of the peptide. For
instance, it has been shown that the deletion of the His1

residue decreases by 50-fold the affinity of PACAP27 for
rat and human PAC1-R (Gourlet et al., 1991b; Bitar and
Coy, 1993). Suppression of the His1 and Ser2 residues
reduces by 3000-fold the potency of PACAP27 to stimu-
late AC in AR4–2J rat pancreatic acinar cells (Robbere-
cht et al., 1992a). Gradual deletion of the N-terminal
residues of PACAP38 showed that PACAP(6–38) is a
potent antagonist (Robberecht et al., 1992b). Oddly
enough, shorter analogs such as PACAP(14–38) retain
some AC-stimulating potency (Fig. 6) (Vandermeers et
al., 1992). Replacement of the Ser2 residue by an Ala
moiety has little effect, whereas substitution of Ser2 by
Phe or Arg decreases by 1000-fold the ability of
PACAP27 analogs to stimulate AC (Hou et al., 1994;
Bourgault et al., 2009b). Ala scanning of the N-terminal
segment revealed that residues Asp3 and Phe6 are key
pharmacophore elements of the PAC1-R (Bourgault et
al., 2009b). Besides, C-terminally truncated PACAP27
analogs, from PACAP(1–26) to PACAP(1–24), act as full
agonists of PAC1-R, although with reduced binding af-
finity (Gourlet et al., 1996b). Additional truncation of
the C-terminal domain of PACAP27, from residues Ala24

to Lys20, gradually decreases both the affinity and the
potency of the peptide (Bourgault et al., 2008b). Al-
though PACAP27 and PACAP38 are both potent ago-
nists on PACAP/VIP receptors, the C-terminal domain of
PACAP38 seems to facilitate the recognition of the bind-
ing sites. For instance, N-terminally truncated or sub-
stituted analogs derived from PACAP38 exhibit higher
activity than their PACAP27 counterparts (Vander-
meers et al., 1992; Bourgault et al., 2009b). A chimeric
peptide formed by adding the PACAP(28–38) sequence

to the VIP moiety exhibits an affinity 100-fold higher
than VIP for PAC1-R (Gourlet et al., 1996a, 1997b),
which provides additional evidence that the C-terminal
region of PACAP38 reinforces the binding efficiency of
the peptide. Furthermore, in human plasma, a factor
identified as ceruloplasmin has been reported to bind
PACAP38 but not PACAP27, suggesting that the 28-
to-38 extension is important for blood transport of
PACAP (Tams et al., 1999). In the same way, the seg-
ment 28-to-38 seems to be essential to allow the recog-
nition of PACAP by the blood-brain barrier transporter
PTS-6 (Banks et al., 1993). The observation that
PACAP27 is relatively resistant to degradation in hu-
man plasma in vitro, whereas the 38-residue isoform
displays a half-life of less than 5 min in isolated human
plasma (Bourgault et al., 2008a), suggests that the 28-
to-38 region is essential for the degradation of PACAP
by plasma endopeptidases.

Structure-activity relationship data are consistent
with the two-domain model mechanism described for
peptide-ligand interaction with class B G protein-cou-
pled receptors (Hoare, 2005). According to this model,
the central and C-terminal helical segments of PACAP
bind to the N-terminal domain of the receptor, and the
disordered N-terminal region of the peptide ligand in-
teracts with the juxtamembrane domain of the receptor
to stimulate intracellular signaling (Hoare, 2005). In
this respect, the integrity of the helical conformation
seems crucial for the binding of PACAP to PAC1-R
(Bourgault et al., 2009a). For instance, breaking-helix
structural modifications, such as the incorporation of a
Gly residue at positions 20 and 21, substitution of the
peptide bond between residues 21 and 22 by a CH2-NH
surrogate, or incorporation of D- or N-methyl-amino ac-
ids at positions 5 to 7, cause a significant loss of binding
affinity (Robberecht et al., 1992a; Bourgault et al.,
2008a, 2009b). Moreover, the N-terminal domain (His1-
Ser2-Asp3-Gly4) seems to adopt a precise bioactive con-
formation, similar to an Asx-Pro turn, when PACAP
interacts with the PAC1-R (Bourgault et al., 2009b).

PACAP27 and VIP possess a high degree of sequence
homology (68%). However, VIP is not able to bind to
PAC1-R efficiently. Because sequence differences be-
tween VIP and PACAP are restricted to regions 4 to 13
and 24 to 28, the PAC1-R selectivity should reside
within these two regions. Synthesis and pharmacologi-
cal characterization of VIP/PACAP chimeras showed
that the selectivity of PAC1-R toward PACAP implicates
not the C-terminal domain but rather the chemical mo-
tifs of the 4-to-13 region (Schäfer et al., 1999; Onoue et
al., 2001).

A natural 61-amino acid polypeptide called maxadilan
has been isolated from the salivary gland of the blood-
feeding sand fly Lutzomia lingipalpis on the basis of its
vasodilatory activity (Lerner et al., 1991) and has been
characterized as a potent selective agonist of PAC1-R
(Table 4) (Moro and Lerner, 1997; Lerner et al., 2007).
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PAC1-R
activity

1 38

PAC1-R
affinity

Facilitates PAC1-R
binding

VPAC1-R
affinity

VPAC2-R
affinity

27

PAC1-R
selectivity

FIG. 7. Primary structure of PACAP38 indicating domains responsi-
ble for recognition, activation, and selectivity of the receptors inferred
from structure-activity relationship studies.
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Because maxadilan possessed no significant sequence
identity with PACAP, this is a unique example of func-
tional convergence between two peptides that do not share
structural similarities. A shortened maxadilan synthetic
analog, termed M65, in which the amino acid sequence 25
to 41 has been deleted, acts as a specific antagonist of
PAC1-R (Uchida et al., 1998; Moro et al., 1999).

Most of the structure-activity relationship studies fo-
cusing on type II receptor so far have been carried out
with VIP derivatives and have contributed to the devel-
opment of pharmacological tools that discriminate be-
tween VPAC1-R and VPAC2-R (Table 4) (Robberecht et
al., 2003; Laburthe and Couvineau, 2002; Laburthe et
al., 2003; Couvineau et al., 2006). N-terminally trun-
cated analogs of PACAP show a preference for VPAC2-R.
For instance, the PACAP(6–38) fragment exhibits a 15-
fold higher affinity for VPAC2-R than for VPAC1-R
(Gourlet et al., 1995), whereas PACAP(1–25) possesses a
66-fold higher affinity for VPAC1-R than for VPAC2-R
(Gourlet et al., 1998). The VIP analog RO 25-1553, that
possesses a C-terminally extended tail and an �-helix-
stabilizing lactam bridge between residues 21 and 25,
behaves as a selective VPAC2-R agonist (Table 4) (Bolin
et al., 1995; Gourlet et al., 1997c). Together, these data
suggest that the C-terminal helical domains of PACAP
and VIP are important for the binding affinity toward
VPAC2-R, whereas, conversely, VPAC1-R seems toler-
ant to deletion at the C terminus.

Further structure-activity relationship studies are now
required to precisely identify the pharmacophores involved
in the binding of PACAP and the activation of its receptors.
A better understanding of the mechanism of activation of

the PAC1-R will also be very helpful for the design of new
analogs specifically activating this receptor, and a new
mode of action may emerge. For instance, in investigating
the antiparasitic activity of PACAP against the African
trypanosome Trypanosoma brucei, it has been suggested
that PACAP, based on its cationic and �-helical amphi-
pathic structure, could cause the destruction of the infec-
tive form of the parasite through a mechanism involving
its direct entry and accumulation into the cytosol (Gonza-
lez-Rey et al., 2006).

E. Distribution of Pituitary Adenylate Cyclase-
Activating Polypeptide Receptors in the Central
Nervous System

The localization of PACAP binding sites and PACAP
receptor mRNAs has been thoroughly investigated in
the rat brain (Masuo et al., 1991; Schäfer et al., 1991;
Masuo et al., 1992; Hashimoto et al., 1996a; Nomura et
al., 1996; Shioda et al., 1997a; Vertongen et al., 1997b;
Basille et al., 2000b). The distribution and relative den-
sity of type I (PACAP specific) and type II (PACAP/VIP)
binding sites are compared in Table 5.

In the rodent and primate brain, high concentrations
of type I binding sites occur in many brain structures,
including the olfactory bulb, the cerebral cortex, the
septum and amygdala, the hippocampus, the thalamus,
the hypothalamus, and the substantia nigra (Table 5;
Fig. 8) (Cauvin et al., 1991; Masuo et al., 1991; Suda et
al., 1991; Masuo et al., 1992; Hou et al., 1994; Zawilska
et al., 2003; Jolivel et al., 2009). Significant densities of
type I binding sites are also present in the cerebellum
(Basille et al., 1993, 1994) and pons (Cauvin et al., 1991;

TABLE 4
Major pharmacological tools available for the study of PAC1, VPAC1, and VPAC2 receptors

Receptor Ligand Limitations

Agonists
PAC1-R Maxadilan

(Moro and Lerner, 1997; Dickson et al., 2006a)

VPAC1-R �A11,22,28�VIP
(Nicole et al., 2000; Dickson et al., 2006b)

�A2,8,9,11,19,22,24,25,27,28�VIP
(Igarashi et al., 2005)

�K15,R16,L27�VIP (1-7)/GHRH (8-27)
(Gourlet et al., 1997b)

VPAC2-R Ro 25-1392
(Xia et al., 1997)

Antagonists
PAC1-R des(24-42)Maxadilan (M65)

(Moro et al., 1999)
PACAP(6-38) Weak VPAC2-R agonist

(Robberecht et al., 1992b)
Hydrazides No information regarding VPAC1/VPAC2-R

(Beebe et al., 2008)
�Sar4�PACAP38 No information regarding VPAC1/VAPC2-R

(Bourgault et al., 2009b)

VPAC1-R �Y9,Dip18�VIP(6-23) Weak affinity for VPAC2-R
(Tams et al., 2000)

PG 97-269 Weak affinity for VPAC2-R
(Gourlet et al., 1997a; Dickson et al., 2006b)

VPAC2-R PG 99-465 VPAC1-R agonist
(Moreno et al., 2000)
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TABLE 5
Localization and relative abundance of type I and type II PACAP binding sites in the rat brain

Structures Type I Type II References

Telencephalon
Olfactory bulb ��� �� Martin et al., 1987; Cauvin et al., 1991

Glomerular layer � Martin et al., 1987
Internal granular layer �� –/�� Martin et al., 1987; Masuo et al., 1992

Cerebral cortex �� �� Ogawa et al., 1985; Staun-Olsen et al., 1985;
Martin et al., 1987; Cauvin et al., 1991; Suda et
al., 1991; Vertongen et al., 1997b; Joo et al.,
2004

Astrocytes � �� Tatsuno et al., 1990
Cingulate cortex ��� � Masuo et al., 1992
Entorhinal cortex �� –/�� Martin et al., 1987; Masuo et al., 1992
Frontal cortex ��� – Masuo et al., 1992
Parietal cortex ��� – Masuo et al., 1992
Piriform cortex ��� – Masuo et al., 1992

Septum
Lateral septal nucleus ��� �/�� Martin et al., 1987; Vertongen et al., 1997b
Medial septal nucleus ��� � Masuo et al., 1992
Olfactory tubercle ��� �/�� Martin et al., 1987; Masuo et al., 1992

Basal ganglia ��� –/� Suda et al., 1991; Masuo et al., 1992
Accumbens nucleus � Martin et al., 1987; Vertongen et al., 1997b

Amygdaloid complex ��� Vertongen et al., 1997b
Basal lateral nucleus � De Souza et al., 1985; Martin et al., 1987
Central nucleus ��� –/� Besson et al., 1986; Martin et al., 1987; Masuo et

al., 1992
Medial nucleus ��� – Martin et al., 1987; Masuo et al., 1992

Hippocampal formation ��� � Ogawa et al., 1985; Cauvin et al., 1991; Hou et
al., 1994; Joo et al., 2004

CA1–3, pyramidal cells ��� –/� Martin et al., 1987; Masuo et al., 1992; Vertongen
et al., 1997b

CA1–3, non-pyramidal
cells

� Vertongen et al., 1997b

Dentate gyrus ��� –/��� Besson et al., 1984; De Souza et al., 1985; Besson
et al., 1986; Martin et al., 1987; Masuo et al.,
1991; Vertongen et al., 1997b

Diagonal band of Broca ��� � Masuo et al., 1992
Diencephalon

Epithalamus
Lateral habenular

nucleus
��� –/�� Martin et al., 1987; Masuo et al., 1991; Vertongen

et al., 1997b
Medial habenular nucleus ��� –/�� Martin et al., 1987; Masuo et al., 1991; Vertongen

et al., 1997b
Pineal gland �� �� Martin et al., 1987; Vertongen et al., 1997b;

Simonneaux et al., 1998
Thalamus �� Vertongen et al., 1997b

Centromedial nucleus – Martin et al., 1987
Mediodorsal nucleus ��� �/�� Besson et al., 1986; Masuo et al., 1992
Paraventricular nucleus ��� � Martin et al., 1987; Nomura et al., 1996
Reuniens nucleus ��� � Martin et al., 1987; Masuo et al., 1992
Rhomboid nucleus ��� � Martin et al., 1987; Masuo et al., 1992
Ventral posterolateral

nucleus
�� � Masuo et al., 1992

Ventromedial nucleus ��� � Martin et al., 1987; Masuo et al., 1992
Hypothalamus ��� Gottschall et al., 1990; Cauvin et al., 1991;

Gottschall et al., 1991; Suda et al., 1991
Arcuate nucleus �� –/�� Martin et al., 1987; Masuo et al., 1992
Dorsomedial nucleus �/�� Besson et al., 1984, 1986; Martin et al., 1987;

Vertongen et al., 1997b
Lateral hypothalamic

area
��� – Masuo et al., 1992

Medial mammillary
nucleus

��� �/�� Martin et al., 1987; Masuo et al., 1992; Vertongen
et al., 1997b

Paraventricular nucleus –/� De Souza et al., 1985; Vertongen et al., 1997b
Preoptic nucleus � Martin et al., 1987
Supraoptic nucleus ��� –/�� De Souza et al., 1985; Martin et al., 1987; Masuo

et al., 1992; Vertongen et al., 1997b
Ventromedial nucleus –/�� Martin et al., 1987; Masuo et al., 1992; Vertongen

et al., 1997b
Mesencephalon

Central gray ��� – Martin et al., 1987; Masuo et al., 1992
Dorsal tegmental nucleus � Martin et al., 1987
Raphe nuclei – Martin et al., 1987
Substantia nigra ��/��� –/� Martin et al., 1987; Masuo et al., 1992
Superior colliculus ��� �/�� Martin et al., 1987; Masuo et al., 1991
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Masuo et al., 1992). In the rat CNS, type II binding sites
are mainly located in the olfactory bulb, the cerebral
cortex, the dentate gyrus, the pineal gland, and the
thalamus (Table 5) (Besson et al., 1984, 1986; Martin et
al., 1987; Vertongen et al., 1998). In contrast, the con-
centration of type II binding sites is much lower than
that of type I sites in many other brain regions such as
the medial nucleus of the amygdaloid complex, the fron-
tal cortex, the lateral hypothalamic nucleus, and the
cerebellum (Table 5) (Masuo et al., 1992; Basille et al.,
1993). In the human brain, VIP/PACAP binding sites
are primarily found in the cortex, the basal ganglia, the
hypothalamus, the cerebellum, and the brainstem (Suda
et al., 1991). These sites exhibit an affinity for PACAP
10 to 20 times higher than that for VIP (Suda et al.,
1992). The occurrence of type I and II binding sites on
cultured rat astrocytes (Tatsuno et al., 1990) suggested
that PACAP and/or VIP receptors are not only present

on neurons but can also be expressed in glial cells (Mar-
tin et al., 1992).

The distribution and relative density of PAC1-R,
VPAC1-R, and VPAC2-R mRNAs are compared in Table
6. On the whole, in the CNS, PAC1-R transcript is much
denser than VPAC1-R and VPAC2-R transcripts (Basille
et al., 2000b). The expression of PAC1-R mRNA is par-
ticularly intense in the olfactory bulb, the dentate gyrus
of the hippocampus, the supraoptic nucleus of the hypo-
thalamus, the cerebellar cortex, and the area postrema
(Fig. 5) (Hashimoto et al., 1996a; Nomura et al., 1996;
Shioda et al., 1997a; Otto et al., 1999; Zhou et al., 2000).
High levels of PAC1-R mRNA are also observed in the
cingulate, entorhinal, and piriform cortices; pyramidal
and nonpyramidal cells of the hippocampal formation;
the amygdaloid nuclei; the centromedial, mediodorsal,
and ventromedial nuclei of the thalamus; the hypothal-
amus; the central gray; the raphe nuclei; and the supe-
rior colliculus (Hashimoto et al., 1996a; Shioda et al.,
1997a; Zhou et al., 2000). In the brain, the localization of
PAC1-R transcript correlates well with the distribution
of type I binding sites (Basille et al., 1993; Shioda et al.,
1997a). The major splice variant of PAC1-R in the rat
brain is the short isoform that does not contain either
hip or hop cassette (Zhou et al., 2000). Although the
PAC1-R gene is predominantly expressed in neurons,
PAC1-R transcript is also detected in glial cells, includ-
ing activated astrocytes (Tatsuno et al., 1991b; Suzuki et
al., 2003). In neurons, PAC1-R-LI is mainly located on
cell bodies and dendrites (Shioda et al., 1997a). At the
ultrastructural level, accumulation of PAC1-R-immuno-
reactive material is observed on the plasma membrane,
notably at synaptic formations (Shioda et al., 1997a).
Moderate levels of PAC1-R are observed in Bergmann
glial cells in the rat cerebellar cortex (Ashur-Fabian et
al., 1997). Characterization of PACAP receptor mRNA
indicates that cultured glial cells express the hop1 splice
variant of PAC1-R (Hashimoto et al., 1996b; Grimaldi
and Cavallaro, 1999).

Anatomical mapping of VPAC1-R and VPAC2-R
mRNAs indicates that the two receptor transcripts have
completely different and apparently complementary dis-

TABLE 5—Continued.

Structures Type I Type II References

Metencephalon
Cerebellum �� – Ogawa et al., 1985; Martin et al., 1987; Cauvin et

al., 1991; Suda et al., 1991
Internal granule cell layer �� – Basille et al., 1994
Medulla – – Basille et al., 1994
Molecular layer – – Basille et al., 1994

Pons �� Cauvin et al., 1991
Locus ceruleus ��� �/��� Martin et al., 1987; Masuo et al., 1992
Pontine nuclei ��� – Masuo et al., 1992
Raphe nuclei ��� � Masuo et al., 1992

Myelencephalon
Area postrema ��� Martin et al., 1987

Spinal cord �� �� Cauvin et al., 1991; Yashpal et al., 1991; Kar and
Quirion, 1995

The symbols provide a semi-quantitative evaluation of the density of PACAP binding sites: ���, high density; ��, moderate density; �, low density; –, no binding sites.

FIG. 8. Autoradiographic distribution of 125I-PACAP27 binding sites
in the brain of the primate Jacchus callithrix (marmoset). The localiza-
tion of the anatomical structures, at the A3 level, is indicated on the left
hemisection (cresyl violet staining), and the distribution of PACAP bind-
ing sites is illustrated on the right hemisection. GC, central gray matter;
GM, medial geniculate body; Hb, habenula; Hf, hippocampal formation;
PCx, parietal cortex; Pu, pulvinar thalami; TCx, temporal cortex. Scale
bar, 1 mm. [Reprinted from Jolivel V, Basille M, Aubert N, de Jouffrey S,
Ancian P, Le Bigot JF, Noack P, Massonneau M, Fournier A, Vaudry H,
Gonzalez BJ, and Vaudry D (2009) Distribution and functional charac-
terization of pituitary adenylate cyclase-activating polypeptide receptors
in the brain of non-human primates. Neuroscience 160:434–451. Copy-
right © 2009 Elsevier Science.]
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TABLE 6
Localization and relative abundance of PACAP receptor mRNAs in the rat brain

Structures PAC1–R VPAC1–R VPAC2–R References

Telencephalon
Olfactory bulb ��� � � Hashimoto et al., 1993; Lutz et al., 1993; Usdin

et al., 1994; Jaworski and Proctor, 2000
Anterior olfactory nucleus �� Hashimoto et al., 1996a; Shioda et al., 1997a
Glomerular layer ��� Hashimoto et al., 1996a; Shioda et al., 1997a;

Zhou et al., 1999a
Internal granular layer ��� – �� Hashimoto et al., 1996a; Shioda et al., 1997a
Mitral cell layer –/�� Hashimoto et al., 1996a; Shioda et al., 1997a;

Zhou et al., 1999a, 2000
Olfactory tubercle ��/��� Hashimoto et al., 1996a; Shioda et al., 1997a

Cerebral cortex �� –/� Ishihara et al., 1992; Lutz et al., 1993; Usdin et
al., 1994

Cingulate cortex ��/��� Hashimoto et al., 1996a; Shioda et al., 1997a;
Zhou et al., 1999a

Entorhinal cortex �� Hashimoto et al., 1996a; Shioda et al., 1997a;
Zhou et al., 1999a

Frontal cortex � Shioda et al., 1997a, 1999a
Parietal cortex � Shioda et al., 1997a, 1999a
Piriform cortex ��� Hashimoto et al., 1996a; Shioda et al., 1997a
Astrocytes (during astrogliosis) �� Suzuki et al., 2003
Pyramidal cells �� Zhou et al., 2000

Septum
Dorsal septal nucleus � Shioda et al., 1997a
Lateral septal nucleus �� Hashimoto et al., 1996a; Shioda et al., 1997a
Medial septal nucleus �� Hashimoto et al., 1996a; Shioda et al., 1997a

Basal ganglia
Accumbens nucleus �� Shioda et al., 1997a

Amygdaloid complex
Basal lateral nucleus –/�� Hashimoto et al., 1996a; Shioda et al., 1997a
Central nucleus �� – ��� Hashimoto et al., 1993; Usdin et al., 1994;

Hashimoto et al., 1996a; Shioda et al., 1997a
Medial nucleus �� Hashimoto et al., 1996a; Shioda et al., 1997a
Posteromedial cortical nucleus �� Shioda et al., 1997a

Hippocampus ��� � Ishihara et al., 1992; Lutz et al., 1993; Usdin et
al., 1994

CA1–3, pyramidal cells –/�� �� � Hashimoto et al., 1993; Sheward et al., 1995;
Hashimoto et al., 1996b; Shioda et al., 1997a;
Zhou et al., 1999a, 2000

CA1–3, nonpyramidal cells �/��� �� � Sheward et al., 1995; Hashimoto et al., 1996a;
Shioda et al., 1997a

Dentate gyrus ��� �� �� Hashimoto et al., 1993, 1996b; Lutz et al., 1993;
Sheward et al., 1995; Shioda et al., 1997a;
Zhou et al., 1999a; Jaworski and Proctor, 2000

Diagonal band of Broca �� �� Usdin et al., 1994; Hashimoto et al., 1996a;
Shioda et al., 1997a

Diencephalon
Epithalamus

Lateral habenular nucleus �� Hashimoto et al., 1996a; Shioda et al., 1997a
Medial habenular nucleus �� Hashimoto et al., 1996a; Shioda et al., 1997a
Pineal gland –/� �/�� –/�� Hashimoto et al., 1996a; Olcese et al., 1996;

Simonneaux et al., 1998
Subthalamus �� Hashimoto et al., 1996a

Zona incerta �� Hashimoto et al., 1996a; Shioda et al., 1997a
Thalamus �� – �� Usdin et al., 1994; Zhou et al., 2000

Centrolateral nucleus �� Hashimoto et al., 1996a; Shioda et al., 1997a
Centromedial nucleus �� Hashimoto et al., 1996a; Shioda et al., 1997a
Intermediodorsal nucleus �� Shioda et al., 1997a
Mediodorsal nucleus �/�� Hashimoto et al., 1996a; Shioda et al., 1997a
Paracentral nucleus �� Shioda et al., 1997a
Parafascicular nucleus � Hashimoto et al., 1996a; Shioda et al., 1997a
Paraventricular nucleus �� Hashimoto et al., 1996a
Reuniens nucleus � Hashimoto et al., 1996a; Shioda et al., 1997a
Rhomboid nucleus �� Hashimoto et al., 1996a; Shioda et al., 1997a
Ventral posterolateral nucleus � Hashimoto et al., 1996a; Shioda et al., 1997a
Ventromedial nucleus �� � – Usdin et al., 1994; Hashimoto et al., 1996a;

Shioda et al., 1997a
Hypothalamus �� – �� Usdin et al., 1994; Zhou et al., 2000

Arcuate nucleus �� – � Usdin et al., 1994; Hashimoto et al., 1996a;
Shioda et al., 1997a

Dorsomedial nucleus �� – �� Usdin et al., 1994; Hashimoto et al., 1996a;
Shioda et al., 1997a

Lateral hypothalamic area �� Hashimoto et al., 1996a; Shioda et al., 1997a
Medial mammillary nucleus � – �� Usdin et al., 1994; Hashimoto et al., 1996a;

Shioda et al., 1997a
Paraventricular nucleus ��� – �� Usdin et al., 1994; Sheward et al., 1995;

Hashimoto et al., 1996a; Shioda et al., 1997a
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tribution in the rat CNS (Ishihara et al., 1992; Usdin et
al., 1994). Thus, VPAC1-R mRNA is expressed mainly in
the cerebral cortex and the hippocampus (Usdin et al.,
1994; Sheward et al., 1995), whereas VPAC2-R mRNA is
expressed in the thalamus, the SCN, the central nucleus
of the amygdala, and the pontine nucleus (Usdin et al.,
1994; Sheward et al., 1995). The distribution of
VPAC2-R overlaps with that of VPAC1-R only in the
hippocampus (Usdin et al., 1994). In the olfactory bulb,
VPAC1-R and VPAC2-R mRNAs are differentially dis-
tributed; i.e., VPAC1-R mRNA is present in the external
plexiform layer, whereas VPAC2-R mRNA is expressed
in the internal granular layer (Usdin et al., 1994). In the
cerebral cortex, VPAC1-R mRNA is abundant in layers
III and V, whereas VPAC2-R mRNA is exclusively local-
ized in layer VI (Usdin et al., 1994). Both VPAC1-R and

VPAC2-R mRNAs have been characterized by RT-PCR
on glial cells (Grimaldi and Cavallaro, 1999). The distri-
bution patterns of PACAP receptors in the brains of
marmoset and macaque, as well as in the human cere-
bellum, are very similar to those described in mice or
rats, suggesting that PACAP probably exerts the same
effects in the brain of primates as in rodents (Basille et
al., 2006a,b; Aubert et al., 2007; Jolivel et al., 2009). In
the murine superior cervical ganglion, intense expres-
sion of PAC1-R mRNA is observed in all neurons, but
neither VPAC1-R nor VPAC2-R mRNAs are present
(Moller et al., 1997a,b; Nogi et al., 1997b; Braas and
May, 1999). In the retina, type I PACAP binding sites
predominate, whereas in the choroid, both type I and II
PACAP binding sites are expressed (Nilsson, 1994;
D’Agata and Cavallaro, 1998). Immunocytochemical and

TABLE 6—Continued.

Structures PAC1–R VPAC1–R VPAC2–R References

Preoptic nucleus ��/��� – � Usdin et al., 1994; Hashimoto et al., 1996a;
Shioda et al., 1997a

Supramammillary nucleus �� – �� Usdin et al., 1994; Hashimoto et al., 1996a;
Shioda et al., 1997a

Supraoptic nucleus ��/��� – � Usdin et al., 1994; Hashimoto et al., 1996a;
Shioda et al., 1997a; Cagampang et al., 1998

Ventromedial nucleus ��/��� – –/�� Usdin et al., 1994; Sheward et al., 1995;
Hashimoto et al., 1996a; Shioda et al., 1997a

Suprachiasmatic nucleus �� – �/�� Usdin et al., 1994; Sheward et al., 1995; Shioda
et al., 1997a; Cagampang et al., 1998;
Shinohara et al., 1999

Mesencephalon
Dorsal tegmental nucleus �� Shioda et al., 1997a
Inferior colliculus �/�� Hashimoto et al., 1996a; Shioda et al., 1997a
Interpeduncular nucleus, lateral part �� Shioda et al., 1997a
Laterodorsal tegmental nucleus � Shioda et al., 1997a
Oculomotor nucleus � Shioda et al., 1997a
Raphe nuclei �/�� Hashimoto et al., 1996a; Shioda et al., 1997a
Substantia nigra �/�� Hashimoto et al., 1996a; Shioda et al., 1997a
Superior colliculus �� Shioda et al., 1997a

Metencephalon
Cerebellum

Purkinje cells –/��� Hashimoto et al., 1996a; Shioda et al., 1997a;
Zhou et al., 1999a, 2000

Granular layers ��� Hashimoto et al., 1996a; Shioda et al., 1997a;
Zhou et al., 1999a; Basille et al., 2000a

Cerebellar nuclei –/� Hashimoto et al., 1996a; Shioda et al., 1997a
Myelencephalon

Brainstem �� Usdin et al., 1994
Abducens nucleus �/�� Hashimoto et al., 1996a; Shioda et al., 1997a
Ambiguus nucleus � Shioda et al., 1997a
Area postrema ��� Shioda et al., 1997a
Cochlear nuclei �� Shioda et al., 1997a
Facial nucleus �� Hashimoto et al., 1996a; Shioda et al., 1997a
Hypoglossal nucleus ��� Hashimoto et al., 1996a; Shioda et al., 1997a
Lateral parabrachial nucleus �� Shioda et al., 1997a
Lateral paragigantocellular nucleus ��/��� Hashimoto et al., 1996a; Shioda et al., 1997a
Locus coeruleus �� Shioda et al., 1997a
Nuclei of the trigeminal complex �� Sheward et al., 1995; Hashimoto et al., 1996a
Nucleus of the solitary tract �� ��� Usdin et al., 1994; Shioda et al., 1997a
Pedunculopontine –/�� Shioda et al., 1997a
Periolivary region �� Shioda et al., 1997a
Pontine nuclei ��/��� – ��� Hashimoto et al., 1996a; Shioda et al., 1997a
Prepositus hypoglossal nucleus � Shioda et al., 1997a
Raphe nuclei �� Shioda et al., 1997a
Spinal trigeminal nucleus �� Shioda et al., 1997a
Vagal complex ��� Shioda et al., 1997a
Vestibular nuclei � Shioda et al., 1997a

Spinal cord
Motor neurons ��� ��� Zhou et al., 1999b, 2001

The symbols provide a semi-quantitative evaluation of the density of PAC1-R, VPAC1-R, and VPAC2-R mRNA: ���, high density; ��, moderate density; �, low density;
–, no hybridization.
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in situ hybridization studies indicate that PAC1-R is
actively expressed in ganglion cells and amacrine cells
as well as in the inner plexiform layer of the retina (Seki
et al., 1997).

To conclude, in the CNS, PAC1-R is generally more
abundant and widely distributed compared with
VPAC1-R and VPAC2-R. In the adult brain, the expres-
sion of PAC1-R is particularly high in neurogenic areas
such as the subventricular zone of the olfactory bulb or
the dentate gyrus of the hippocampus. The expression of
VPAC-R is rather found in the olfactory bulb, cortex,
dentate gyrus, pineal gland, and thalamus.

F. Distribution of Pituitary Adenylate Cyclase-
Activating Polypeptide Receptors in Peripheral Organs

PACAP binding sites and/or receptor mRNAs have
been identified in most endocrine glands (Tables 7 and
8). Type I PACAP binding sites have been characterized

on rat and frog anterior pituitary membranes
(Gottschall et al., 1990; Lam et al., 1990; Jeandel et al.,
1999). Cytochemical labeling using biotinylated PACAP
has revealed that all cell types of the adenohypophysis
possess PACAP recognition sites (Vigh et al., 1993; Raw-
lings, 1996). RT-PCR amplification on single pituitary
cells indicated that gonadotrophs express the short and
hop splice variant isoforms of PAC1-R (Bresson-Bépol-
din et al., 1998). VPAC2-R mRNA is widely distributed
in the anterior pituitary, whereas VPAC1-R mRNA is
not expressed (Usdin et al., 1994). In the posterior pitu-
itary, both the neural lobe (Hashimoto et al., 1996a) and
the intermediate lobe (René et al., 1996) contain moder-
ate concentrations of PAC1-R mRNA. In the pancreas,
insulin-producing cells express both PAC1-R and
VPAC2-R mRNAs (Usdin et al., 1994; Wei and Mojsov,
1996a,b; Filipsson et al., 1998a; Torii et al., 1998),
whereas VPAC1-R mRNA is found only in the walls of

TABLE 7
Localization and relative abundance of type I and type II PACAP binding sites in rat peripheral tissues

Structures Type I Type II References

Eye
Choroid � � Nilsson, 1994; D’Agata and Cavallaro, 1998
Retinal papilla �� – Nilsson, 1994; D’Agata and Cavallaro, 1998

Endocrine glands
Anterior pituitary ��/��� �� Gottschall et al., 1990; Lam et al., 1990; Huang

et al., 1993
Adrenal gland

Glomerulosa tissue � Hinson et al., 1999
Medulla —- Chromaffin cells �� –/� Shivers et al., 1991; Watanabe et al., 1992

Pancreas �� Gourlet et al., 1991b; Robberecht et al., 1991b;
Kashimura et al., 1993; Schmidt et al., 1993

Liver � �� Gottschall et al., 1990; Robberecht et al., 1991a;
Shivers et al., 1991; Guijarro et al., 1992, 1995;
Huang et al., 1993; Nguyen et al., 1993; Bitar et

al., 1994; Gagnon et al., 1994
Gonads

Testis – Lam et al., 1990
Spermatogonia and primary spermatocytes �� Shivers et al., 1991
Seminiferous tubules –/�� Shivers et al., 1991
Spermatids � � Shivers et al., 1991; Li et al., 2004
Leydig cells � �� Hueso et al., 1989; Romanelli et al., 1997
Epithelial cells from epididymal tubules � Shivers et al., 1991

Prostate �/�� Prieto et al., 1981; Shivers et al., 1991; Juarranz
et al., 1999

Seminal vesicles � Shivers et al., 1991
Ovary �� Gottschall et al., 1990

Cardio vascular system
Arteries � �� Huang and Rorstad, 1987; Amenta et al., 1991;

Huang et al., 1993
Heart – Shivers et al., 1991

Urinary tract
Kidney –/� �� Magistretti et al., 1988; Lam et al., 1990; Shivers

et al., 1991
Respiratory tract

Lung ��� Gottschall et al., 1990; Lam et al., 1990; Shivers
et al., 1991; Bitar and Coy, 1993; Huang et al.,
1993; Sakakibara et al., 1994; Sreedharan et
al., 1995

Digestive system
Colon � �� Broyart et al., 1981; Prieto et al., 1981; Lam et

al., 1990; Ekblad, 1999
Duodenum �� Gottschall et al., 1990

Lymphoid tissues
Lymphoid cells �� Calvo et al., 1986
Macrophages �� � Sakakibara et al., 1994
Spleen �� Wiedermann et al., 1988; Tatsuno et al., 1991a
Thymus – �� Gottschall et al., 1990; Shivers et al., 1991

The symbols provide a semi-quantitative evaluation of the density of PACAP binding sites: ���, high density; ��, moderate density; �, low density; –, no binding sites.
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blood vessels (Usdin et al., 1994). In the rat adrenal
gland, type I PACAP binding sites have been character-
ized in medullary chromaffin cells and ganglion cells by
cytoautoradiography (Shivers et al., 1991; Shioda et al.,
2000) and immunocytochemistry (Moller and Sundler,
1996). In situ hybridization studies indicate that adre-
nochromaffin cells actively express both the hop1 splice
variant of PAC1-R (Nogi et al., 1997a) and VPAC1-R
(Usdin et al., 1994). In contrast, the expression level of

VPAC2-R in the adrenal medulla is much lower (Usdin
et al., 1994). In the frog adrenal gland, type I PACAP
binding sites are expressed on both adrenocortical and
chromaffin cells (Yon et al., 1994). In the rat ovary, the
presence of PAC1-R and VPAC2-R mRNAs has been
reported (Usdin et al., 1994; Scaldaferri et al., 1996;
Kotani et al., 1997, 1998). Granulosa cells of the devel-
oping follicle express VPAC2-R mRNA (Usdin et al.,
1994), whereas the corpus luteum contains PAC1-R

TABLE 8
Localization and relative abundance of PACAP receptor mRNA in rat peripheral tissues

Structures PAC1-R VPAC1-R VPAC2-R References

Peripheral nervous system
Superior cervical ganglia ��/��� – – Nogi et al., 1997b; Braas and May, 1999
Cardiac ganglia � Braas et al., 1998
Organ of Corti �� Drescher et al., 2006

Eye
Retina � � � D’Agata and Cavallaro, 1998
Ganglion cells �� Seki et al., 1997

Endocrine glands
Anterior pituitary ��/��� –/� �/�� Lutz et al., 1993; Usdin et al., 1994; Rawlings et

al., 1995; Vertongen et al., 1995b; Hashimoto
et al., 1996a; Shioda et al., 1997a

GH cells � – – Vertongen et al., 1995b
PRL cells �� – � Vertongen et al., 1995b

Intermediate lobe of the pituitary –/� � Usdin et al., 1994; Hashimoto et al., 1996a;
Shioda et al., 1997a

Posterior pituitary –/� Hashimoto et al., 1996a; René et al., 1996;
Shioda et al., 1997a

Adrenal gland �� Hashimoto et al., 1993
Cortex – � �� Usdin et al., 1994; Nogi et al., 1997a
Medulla–Chromaffin cells �� �� � Usdin et al., 1994; Moller and Sundler, 1996;

Nogi et al., 1997a; Shioda et al., 2000; Drescher
et al., 2006

Ganglion cells �� Shioda et al., 2000
Pancreas � �� � Filipsson et al., 1998b; Tamakawa et al., 1998

Pancreatic beta islets �� – �� Usdin et al., 1994; Chatterjee et al., 1996;
Filipsson et al., 1998a

Liver � � � Hosoya et al., 1993; Usdin et al., 1994
Gonads

Testis � �� Usdin et al., 1994
Early germ cells – – �� Usdin et al., 1994; Krempels et al., 1995
Seminiferous tubules � Krempels et al., 1995
Spermatids � � Li et al., 2004

Penile corpus cavernosum �� – �� Guidone et al., 2002
Ovary

Granulosa and cumulus cells � – �/�� Usdin et al., 1994; Scaldaferri et al., 1996;
Shioda et al., 1996b; Kotani et al., 1998; Park et

al., 2000
Corpus luteum � Kotani et al., 1997

Placenta
Chorionic vessels �� Koh et al., 2003
Decidual cells �� Koh et al., 2003
Stromal cells �� Koh et al., 2003

Urinary tract
Kidney � � Usdin et al., 1994

Respiratory tract
Lung � �� � Ishihara et al., 1992; Hosoya et al., 1993; Usdin

et al., 1994; Chatterjee et al., 1996; Pei, 1997
Tracheobronchial wall � � Ishihara et al., 1992; Sreedharan et al., 1993;

Usdin et al., 1994
Digestive system

Intestine �� Ishihara et al., 1992; Usdin et al., 1994
Stomach – � Usdin et al., 1994; Teng et al., 1998
Gastric enterochromaffin-like cells � Zeng et al., 1999b

Lymphoid tissues
Spleen – �/�� Usdin et al., 1994
Thymus � �� � Usdin et al., 1994; Tokuda et al., 2004

Macrophages � Pozo et al., 1997
Lymphocytes – � � Waschek et al., 1995a; Delgado et al., 1996c,d;

Ganea, 1996; Johnson et al., 1996

The symbols provide a semi-quantitative evaluation of the density of PAC1–R, VPAC1–R and VPAC2–R mRNA. ���, high density; ��, moderate density; �, low density;
–, no hybridization.
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mRNA (Kotani et al., 1997). In the placenta, PAC1-R is
expressed in decidual cells, chorionic vessels, and stro-
mal cells of the chorionic villi, at variable intensity,
depending on the day of gestation (Koh et al., 2003).
Besides, both VPAC1-R and VPAC2-R mRNAs occur in
the placenta, as shown by Northern blot analysis (Ad-
amou et al., 1995; Sreedharan et al., 1995). In the hu-
man and rat placenta, PAC1-R mRNA colocalizes with
PACAP mRNA, and the two transcripts exhibit the same
kinetics of expression throughout pregnancy (Koh et al.,
2003, 2005). In the testis, type I PACAP binding sites
are found in germ cells (Shivers et al., 1991), Leydig cells
(Romanelli et al., 1997), and Sertoli cells (Heindel et al.,
1992; Daniel et al., 2001). In situ hybridization and
Northern blot analyses indicate that PAC1-R and
VPAC2-R mRNAs, but not VPAC1-R mRNA, are ex-
pressed in germ cells (Usdin et al., 1994; Krempels et al.,
1995; El-Gehani et al., 1998a,b; Koh and Won, 2006).
Spermatids contain both PAC1-R and VPAC2-R (Li et
al., 2004). In the healthy and tumoral prostate, all
PACAP receptors are expressed (Juarranz et al., 1999;
Solano et al., 1999; García-Fernández et al., 2003).

In the digestive system, PACAP/VIP receptors are
found both in the alimentary canal and accessory
glands. In the human labial and submandibular gland,
type II sites are found in acinar cells (Törnwall et al.,
1994; Kusakabe et al., 1998). In the guinea pig stomach,
type II binding sites are present in chief cells (Felley et
al., 1992), whereas in the rabbit stomach, type II sites
are borne by smooth muscle cells (Murthy et al., 1997).
Characterization of the receptor mRNAs confirmed that
only the VPAC2-R gene is expressed in the rat, guinea
and rabbit stomach (Usdin et al., 1994; Teng et al.,
1998). Type II binding sites are also present at different
levels of the intestine (Prieto et al., 1981; Zimmerman et
al., 1988; Zimmerman et al., 1989). In the human colon,
type II sites are located on epithelial cells (Broyart et al.,
1981; Salomon et al., 1993). Type II binding sites are
found on liver membranes (Guijarro et al., 1992, 1995;
Gagnon et al., 1994). Characterization of the receptor
mRNAs by in situ hybridization and real-time PCR in-
dicates that the VPAC1-R gene is predominantly ex-
pressed in the rat liver and gallbladder epithelial cells
(Usdin et al., 1994; Chignard et al., 2005).

The presence of PACAP/VIP receptors has been re-
ported in various components of the immune system
(Xin et al., 1994; Ganea, 1996). The PAC1-R gene is
expressed in rat peritoneal macrophages but not in peri-
toneal lymphocytes (Delgado et al., 1996a; Pozo et al.,
1997). VIP-preferring sites are present in human blood
mononuclear cells (Guerrero et al., 1981) and in murine
splenocytes (Tatsuno et al., 1991b). The VPAC1-R gene
is constitutively expressed in T-lymphocytes and thymo-
cytes (Waschek et al., 1995a; Delgado et al., 1996c,d;
Johnson et al., 1996). Stimulation through the T-cell
receptor-associated CD3 complex induces the expression

of the functional VPAC2-R in T lymphocytes (Delgado et
al., 1996a; Miller et al., 2006).

PACAP/VIP receptors are found at all levels of the
respiratory tract. In the human trachea, type II binding
sites are localized in acini and excretory ducts of sub-
mucosal glands (Fischer et al., 1992). High densities of
type II binding sites are also present in the lung (Lam et
al., 1990; Shivers et al., 1991; Bitar and Coy, 1993;
Sreedharan et al., 1995). VPAC1-R mRNA is highly ex-
pressed in the epithelium of large bronchi, whereas
VPAC2-R mRNA is present in small terminal bronchi-
oles (Ishihara et al., 1992; Sreedharan et al., 1993; Us-
din et al., 1994).

PACAP receptors are expressed in various compo-
nents of the cardiovascular system. In the heart,
PAC1-R, VPAC1-R, and VPAC2-R mRNAs have been
characterized by Northern blot analysis (Gagnon et al.,
1994; Adamou et al., 1995; Wei and Mojsov, 1996a,b;
Wong et al., 1998). Various isoforms of PAC1-R mRNA
and VPAC2-R mRNA are located in cardiac ganglia
(Gagnon et al., 1994; Braas et al., 1998). The aortic
tissue expresses mRNAs for all PACAP receptors
(Miyata et al., 1998). However, in de-endothelialized
aortic tissue and cultured vascular smooth muscle cells,
only VPAC2-R mRNA is detected, suggesting that
VPAC2-R may mediate the vasodilatory effects of
PACAP (Miyata et al., 1998).

Transcripts of VPAC2-R are found in a number of
other peripheral tissues, such as the skeletal muscle
(Wei and Mojsov, 1996a,b), the loops of Henle and the
collecting tubules of the renal medulla (Usdin et al.,
1994), and the white fat (Wei and Mojsov 1996a,b).

To conclude, PACAP receptor subtypes exhibit a dis-
tinct distribution pattern in peripheral organs. PAC1-R
is mainly found in the pituitary, adrenal medulla, and
placenta. VPAC1-R is highly expressed in lung, intes-
tine, pancreas and adrenal medulla, whereas VPAC1-R
is more located in pituitary, testis and ovary, spleen, and
adrenal cortex. This widespread expression supports the
view that PACAP exerts a large array of biological func-
tions (see section IV). However, it also indicates that
adverse side effects may preclude the development of
therapeutic agents targeting PACAP receptors.

G. Pituitary Adenylate Cyclase-Activating Polypeptide
Receptors in Tumor Cells

Neoplastic cells from breast, lung, and prostate, as
well as pancreatic, colonic, and hepatocellular carci-
noma, often express type II PACAP/VIP binding sites
(Reubi, 1995; Moody et al., 1998; Reubi et al., 1999a,b;
Busto et al., 1999, 2003; Germano et al., 2004; Schulz et
al., 2004; Collado et al., 2005; García-Fernández et al.,
2005; Mammi et al., 2006; Moretti et al., 2006). The
presence of type II recognition sites also occurs in hu-
man pituitary adenoma (Robberecht et al., 1993; Oka et
al., 1998) and brain glioma (Robberecht et al., 1994;
Vertongen et al., 1995a; Sokolowska and Nowak, 2006).
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Therefore, attempts have been made to use PACAP or
VIP radioligands to localize tumor cells by scintigraphy
in various tissues (Moody et al., 1998; Raderer et al.,
1998; Virgolini et al., 1998; Reubi, 2000; Igarashi et al.,
2005; Zhang et al., 2007a), and VIP derivatives mixed
with nanomicelles are currently developed as a possible
delivery platform to target breast cancer cells (Ashok et
al., 2004; Rubinstein et al., 2008; Onyüksel et al.,
2009a,b). In vitro studies have confirmed that a number
of tumor cell lines express PACAP/VIP receptors. Type I
binding sites have been characterized in the rat pancre-
atic acinar AR4–2J (Buscail et al., 1990) and medullary
carcinoma 6/23 cell lines (Vertongen et al., 1994), the
human neuroblastoma NB-OK cell line (Cauvin et al.,
1990; Vertongen et al., 1997a), neuroendocine BON cells
(Lieu et al., 2006), and oligodendrogliomas (Jaworski,
2000). The hypothalamic GnRH neural cell line GT1–7
expresses the VPAC2-R gene (Olcese et al., 1997). Func-
tional PACAP receptors have also been characterized in
adrenal pheochromocytoma PC12 cells (Watanabe et al.,
1990) and adrenocortical NCI-H295 cells (Haidan et al.,
1998). Tumoral breast and intestinal cell lines exhibit
VPAC1-R mRNA, whereas neuroectodermal and pancre-
atic cell lines express both VPAC1-R and VPAC2-R
mRNAs (Waschek et al., 1995b; Jiang et al., 1997; Mad-
sen et al., 1998; Dagar et al., 2001). It is noteworthy that
receptor subtypes expressed in rat pituitary tumor cells
are reportedly different from those found in normal ad-
enohypophysial cells (Rawlings, 1994; Rawlings et al.,
1994; Vertongen et al., 1996), suggesting a possible in-
volvement of PACAP in the tumorigenic process.

H. Ontogenesis of Pituitary Adenylate Cyclase-
Activating Polypeptide Receptors

The distribution and density of PACAP/VIP receptors
has been thoroughly investigated in the developing
brain and adrenal gland. In the rat CNS, type I PACAP
binding sites are detected as early as E14, and their
density gradually increases during development to
reach a plateau between 1 and 4 months (Tatsuno et al.,
1994). The highest concentrations of type I PACAP bind-
ing sites are found in discrete regions of the germinative
neuroepithelia at the level of the metencephalon and
myelencephalon (Hill et al., 1994; Basille et al.,
2000a,b). PAC1-R mRNA is first detected in the neural
tube in 9.5-day-old mouse and rat embryos (Sheward et
al., 1996, 1998; Waschek et al., 1998; Zhou et al., 1999a).
From E9.5 to E12, the density of PAC1-R mRNA in-
creases in the neuroepithelia of the mesencephalon and
rhombencephalon (Sheward et al., 1996, 1998; Shuto et
al., 1996; Zhou et al., 1999a; Watanabe et al., 2007). At
E13 or E14, PAC1-R is expressed in the basal telenceph-
alon and in the neuroepithelia of the hippocampal for-
mation, cerebral cortex, and cerebellum (Zhou et al.,
1999a; Jaworski and Proctor, 2000). In infant rats,
PAC1-R mRNA is intensely expressed in the olfactory
bulb and the hippocampus (Fig. 5) (Zhou et al., 1999a;

Jaworski and Proctor, 2000). In the human brain, the
PAC1-R-null and PAC1-R isoforms lacking exons 5 and
6 are the major variants expressed, and it has been
suggested that during brain maturation, a switch be-
tween functionally distinct isoforms may occur (Lutz et
al., 2006). The ontogeny of type I binding sites has been
investigated in detail in the rat cerebellum during post-
natal development (Basille et al., 1994). In the external
granule cell layer (EGL) and medulla, the density of
sites is high from birth to P8 and decreases markedly
from P8 to P25. In the internal granule cell layer (IGL)
and molecular layer, binding sites are first detected at
P8, and the density then gradually decreases from P8 to
P25 (Basille et al., 1994). These binding sites correspond
to PAC1-R, and their expression in granule cells can be
stimulated by neurotrophins (notably nerve growth fac-
tor) in a mitogen-activated protein kinase (MAPK)-de-
pendent manner (Jamen et al., 2002a). The presence of
functional PACAP receptors in a germinative matrix
such as the EGL (Basille et al., 1993, 1995; D’Agata et
al., 1996; Gonzalez et al., 1996) suggests that PACAP
may act as a trophic factor during development (see
section IV.A.4). In the P10 mice, PAC1-R is also actively
expressed in the neurogenic region of the rostral migra-
tory stream, from the apical subventricular zone to the
olfactory bulb (Matsuno et al., 2008). Comparative dis-
tribution of PACAP and PACAP receptors in the devel-
oping rat brain reveals the existence of a good correla-
tion between the localization of the peptide and its
receptors in all germinative neuroepithelia, providing
additional support for the involvement of PACAP as a
neurotrophic factor (Masuo et al., 1994; Tatsuno et al.,
1994; Sheward et al., 1996, 1998; Shuto et al., 1996;
Lindholm et al., 1998; Waschek et al., 1998; Skoglösa et
al., 1999c).

Type II PACAP binding sites are also found in the
CNS of rodents at early embryonic stages, and the den-
sity of binding sites increases during postnatal develop-
ment (Roth and Beinfeld, 1985). The distribution pat-
tern of VPAC1-R mRNA exhibits striking similarities to
that of PAC1-R transcript, although the expression level
of the former is much lower than that of the latter (Pei,
1997; Basille et al., 2000a,b). In rat, VPAC1-R mRNA is
expressed from E14 to birth in the neuroepithelia bor-
dering the ventricles (Pei, 1997; Basille et al., 2000b).
Likewise, in the mouse brain, VPAC2-R mRNA is
present at E14 (Waschek et al., 1996). From E21 to
adulthood, VPAC2-R mRNA is observed mainly in the
SCN in the hypothalamus and the ventrolateral nucleus
of the thalamus (Basille et al., 2000b).

In the developing human cerebellum, the PAC1-R and
VPAC1-R genes are expressed from 15-week-old fetuses
to 22-year-old subjects (Basille et al., 2006a). In human
fetuses and infants, as in rodents, PAC1-R and
VPAC1-R mRNAs and PACAP binding sites are present
in the EGL and IGL (Basille et al., 2006a,b), suggesting

PITUITARY ADENYLATE CYCLASE-ACTIVATING POLYPEPTIDE 309



that PACAP may exert neurodevelopmental functions in
the cerebellum.

The presence of PACAP receptors has been studied in
the rat and human adrenal gland during development.
In newborn rat, PAC1-R mRNA is expressed in the ad-
renal medulla (Moller and Sundler, 1996), and exposure
of cultured neonatal rat chromaffin cells to PACAP stim-
ulates neurite outgrowth (Wolf and Krieglstein, 1995).
In 14- to 20-week-old human fetuses, PACAP binding
sites are observed in the adrenal medulla (Breault et al.,
1998; Yon et al., 1998); in cultured human adrenochro-
maffin cells, PACAP stimulates AC activity, indicating
that the binding sites found in the fetal human adrenal
medulla actually correspond to functional receptors (Yon
et al., 1998; Breault et al., 2000). Because, during the
second trimester of gestation, cells derived from the
ectoderm migrate inside the fetal cortical zone to form
the medulla (Cooper et al., 1990; Ehrhart-Bornstein et
al., 1997), these observations suggest that PACAP may
play a crucial role in the ontogenesis of the adrenal
gland.

In summary, PACAP receptors are detected as early
as E9.5 in the brains of mouse and rat embryos, and
their density gradually increases throughout develop-
ment. The expression of the PAC1-R during ontogenesis
is particularly high in germinative areas. Although
VPAC1-R is expressed at lower levels, its distribution
pattern in the developing brain is very similar to that of
PAC1-R. In contrast, the distribution pattern of
VPAC2-R is quite different as these receptors are rather
detected in postmitotic areas.

I. Phylogenetic Evolution of Pituitary Adenylate
Cyclase-Activating Polypeptide Receptors

Phylogenetic analysis of receptors for VIP, PACAP,
and related peptides in vertebrates shows a tree topol-
ogy containing five sub-branches, including PAC1,
VPAC1, VPAC2/PHI, PRP, and GHRH receptors, that
were evolved from a common ancestral gene (Fig. 9). In
addition, a teleost-specific duplication has occurred
(Cardoso et al., 2007a) that is in line with the proposed
partial or whole genome duplication event in fish (3R).

PAC1-R cDNAs have been cloned in the goldfish C.
auratus (Wong et al., 1998), the fugu Fugu rubripes
(isoforms A and B; Cardoso et al., 2004), the sea bream
Sparus auratus (isoforms A and B, and a hop-1 variant
from isoform A; Cardoso et al., 2007b), the zebrafish D.
rerio (Wu et al., 2008), the frog R. ridibunda (Alexandre
et al., 1999), and the chicken Gallus domesticus (Peeters
et al., 1999). Consistent with the idea that PAC1-R is a
PACAP-specific receptor, both goldfish and sea bream
PAC1-Rs are stimulated by PACAP27 and PACAP38,
whereas VIP is a much weaker agonist. The two sea-
bream PAC1-Rs, which probably result from 3R, show
very different expression patterns as determined by RT-

PCR, suggesting distinct functions for these isoforms in
fish.

VPAC1-R cDNAs have been cloned in the goldfish
(Chow et al., 1997), the fugu (2 isoforms A and B: Car-
doso et al., 2004), the dogfish Squalus acanthias (Bewley
et al., 2006), the zebrafish (Wu et al., 2008) and the frog
R. ridibunda (Alexandre et al., 1999). In contrast to
mammals, in which VPAC1-R interacts with VIP and
PACAP with similar affinities, VPAC1-R from goldfish
and dogfish show higher affinities toward VIP than
PACAP. For example, the dogfish VPAC1-R mediates
chloride secretion in the rectal gland with affinity VIP �
PHI � PACAP � secretin. In frog, however, VPAC1-R is
able to bind both VIP and PACAP (Alexandre et al.,
2000a), suggesting that the receptor ability to interact
with PACAP could have emerged only after the diver-
gence giving rise to the tetrapod lineage. In fact, based
on gene prediction of the class II B receptor family in
teleosts, it has been proposed that the VPAC1-R gene is
the ancestral form of the receptor (Cardoso et al., 2005).
Thus, the first VIP/PACAP receptor possibly interacted
specifically with VIP but not with PACAP.

VPAC2-R cDNAs have been cloned in the goldfish (Tse
et al., 2002) and the zebrafish (Wu et al., 2008). Al-
though these receptors are structurally similar to mam-
malian VPAC2-R, they exhibit highest affinity to PHI
and peptide histidine valine (Tse et al., 2002). In con-
trast, the pharmacological profile of the frog VPAC2-R
characterized in R. tigrina rugulosa is similar to that of
the mammalian VPAC2-R (Hoo et al., 2001). These find-
ings suggest that the common ancestral receptor for
VPAC2-R/PHI-R was originally a functional PHI/pep-
tide histidine valine receptor in early vertebrates and
that this receptor has evolved to become a VIP/PACAP
receptor only after divergence of the tetrapod lineage.
Alternatively, it is also possible that the specificity of
VPAC2-R has changed to bind PHI after the teleost/
tetrapod split in teleosts. Functional characterization of
VPAC2-Rs in fish or ancient extant vertebrate species
such as lamprey and hagfish should provide clues to
understand the evolution of VPAC2-R and other VIP/
PACAP receptors in vertebrates.

IV. Biological and Pharmacological Effects of
Pituitary Adenylate Cyclase-Activating

Polypeptide

The widespread distribution of PACAP and its recep-
tors indicates that the peptide may exert pleiotropic
physiological functions. As a matter of fact, PACAP has
now been shown to act as a hormone, a neurohormone, a
neurotransmitter, and a trophic factor in a number of
tissues.

A. Effects of Pituitary Adenylate Cyclase-Activating
Polypeptide on the Central Nervous System

1. Actions on the Hypothalamus. The most abundant
population of PACAP-containing neurons and the high-
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est density of PACAP binding sites are found in the
hypothalamus (Tables 1 and 4) (Arimura, 1992; Arimura
and Shioda, 1995). In particular, a dense accumulation
of PACAP-immunoreactive neurons and PACAP recep-
tors is present in the magnocellular region of the PVN
and supraoptic nucleus, where the neurosecretory
perikarya producing oxytocin and vasopressin are lo-
cated (Köves et al., 1990, 1991; Masuo et al., 1992;
Kimura et al., 1994; Tamada et al., 1994; Hannibal et
al., 1995a,b; Shioda et al., 1997b; Légrádi et al., 1998).
Intracerebroventricular injection of PACAP causes a ro-
bust enhancement of Fos-LI in these two hypothalamic
nuclei (Nomura et al., 1999). Exposure of rat brain slices
to PACAP increases the firing rate activity and causes
membrane depolarization of magnocellular neurons in

the PVN (Uchimura et al., 1996) and supraoptic nucleus
(Shibuya et al., 1998a,b). Intracerebroventricular and
intracisternal injection of PACAP induces a dose-depen-
dent elevation of plasma vasopressin concentration (Mu-
rase et al., 1993; Seki et al., 1995b). In addition, pro-
longed dehydration increases immunoreactivity for
PACAP27, PACAP38, and PAC1-R and stimulates local
release of PACAP in the supraoptic nucleus (Gillard et
al., 2006). In the neural lobe of the pituitary, PACAP
stimulates the release of oxytocin and vasopressin
through activation of the cAMP/protein kinase A
(PKA) signaling pathway (Lutz-Bucher et al., 1996).
Collectively, these observations indicate that PACAP
is a potent modulator of hypothalamic magnocellular
neurons.

FIG. 9. Phylogenetic relationships of PAC1-R, VPAC1-R, VPAC2-R, PHI-R, GHRH-R, PRP-R, and glucagon-R. Glucagon-R was used as an
outgroup. Analysis was performed with MEGA 3.1 (http://www.megasoftware.net/) using the neighbor-joining method. Bootstrap is provided on each
branching point as test of inferred phylogeny using 103 replications.
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PACAP modulates the activity of various other hypo-
thalamic neuronal populations. For instance, central ad-
ministration of PACAP provokes significant increases in
GnRH, somatostatin, and CRH gene expression that are
prevented by concomitant injection of the PACAP antag-
onist PACAP(6–38) (Li et al., 1996; Grinevich et al.,
1997; Kageyama et al., 2007). Intracerebroventricular
injection of PACAP stimulates the expression of prolac-
tin (PRL) mRNA in the rat hypothalamus (Bredow et al.,
1994). PACAP injection also induces phosphorylation of
the transcription factor CREB and stimulates Fos ex-
pression in the majority of CRH neurons in the PVN,
leading to a substantial increase in plasma corticoste-
rone concentration and enhanced behavioral stress re-
sponses (Agarwal et al., 2005; Norrholm et al., 2005).
Intracerebroventricular injection of PACAP increases
the level of the dopamine metabolite 3,4-dihydroxyphe-
nylacetic acid in the sheep medial basal hypothalamus
(Anderson and Curlewis, 1998). In the ovariectomized
ewe, infusion of PACAP in the ARC reduces plasma PRL
concentration (Anderson et al., 1996). Likewise, injec-
tion of PACAP in the medial basal hypothalamus sup-
presses luteinizing hormone (LH) secretion, LH pulse
frequency, and ovulation (Anderson et al., 1996). Single
administration of PACAP to neonatal female rats delays
the onset of puberty by influencing the GnRH neuronal
system through PAC1-R (Choi et al., 2000; Szabó et al.,
2002). In adult female rat and mouse, steroids regulate
the expression of PACAP mRNA in the ventromedial
nucleus and PACAP content in the medial basal hypo-
thalamus (Apostolakis et al., 2004). In addition, PACAP,
acting through PAC1-R, mediates progesterone-evoked
sexual behavior in the rat ventromedial nucleus (Apos-
tolakis et al., 2005). Taken together, these data indicate
that PACAP may act within the hypothalamus as a
neurotransmitter or neuromodulator to regulate the se-
cretion of hypophysiotropic neurohormones.

PACAP mRNA-containing cell bodies are abundant in
the ventromedial hypothalamic nucleus and in the ARC
(Segal et al., 2005). In particular, double labeling exper-
iments indicate that PACAP-LI is present in 20% of
proopiomelanocortin (POMC) neurons in the ventrolat-
eral aspect of the ARC (Dürr et al., 2007). In addition,
PAC1-R and/or VPAC2-R mRNAs are expressed in 50%
of POMC-producing neurons and in a significant propor-
tion of NPY neurons in the ARC (Mounien et al.,
2006a,b). PACAP increases [Ca2�]i in isolated NPY neu-
rons of the ARC (Nakata et al., 2004) and stimulates
POMC mRNA expression, �-melanocyte-stimulating
hormone (�-MSH) content, and �-MSH release from hy-
pothalamic explants (Nakata et al., 2004; Mounien et
al., 2006b). Central administration of PACAP provokes
an increase in POMC and MC4-R mRNA expression in
the hypothalamus (Mounien et al., 2009). In fasting
mice, intracerebroventricular injection of PACAP signif-
icantly reduces food intake (Mounien et al., 2009); like-
wise, PACAP(�/�) mice consume less carbohydrate-rich

food (Nakata et al., 2004). The involvement of PACAP in
the regulation of energy balance and feeding is also
supported by the fact that starvation causes a substan-
tial increase in immunoreactive PACAP concentration
in the rat hypothalamus (Kiss et al., 2007).

PACAP has been detected in the retinohypothalamic
tract, a direct projection from the retina to the SCN that
mediates the daily adjustment of the biological clock to
the solar cycle (Gillette and Mitchell, 2002). In rat, daily
variations in the density of PAC1-R mRNA are observed
in the SCN and in the supraoptic nucleus, with a peak at
noon and a peak at midnight, but not in the cingulate
cortex (Cagampang et al., 1998). However, differential
regulation of PAC1-R variant expression has been re-
ported in the SCN during light-dark cycles (Shinohara et
al., 2002). Biphasic variations of VPAC2-R mRNA levels
are also observed in the SCN (Cagampang et al., 1998;
Shinohara et al., 1999). Likewise, in the preoptic areas,
the transcription of PACAP, regulated by the thyroid-
specific transcription factor-1, shows daily changes dur-
ing a normal day-night cycle (Kim et al., 2002). Further-
more, treatment of SCN tissue slices with PACAP or
injection of PACAP into the lateral ventricle induces the
expression of Homer-1 and the clock genes mPer (mouse
period gene) (Minami et al., 2002; Nielsen et al., 2002)
and stimulates MAPK, MSK1, PKC, Ca2�/calmodulin-
dependent protein kinase, and L-type Ca2� channel ac-
tivity (Dziema and Obrietan, 2002; Butcher et al., 2005;
Fahrenkrug et al., 2005). These data indicate that
PACAP and PACAP receptors are differentially ex-
pressed in the rat brain across the 24-h cycle, and sug-
gest that PACAP is involved in the circadian pacemaker
(see section IV.2).

2. Actions of Pituitary Adenylate Cyclase-Activating
Polypeptide on the Pineal Gland and Circadian Rhythms.
Circadian variations in PACAP content occur in the rat
pineal gland (Fukuhara et al., 1998), and a high density
of PACAP binding sites is present in the pineal gland
(Table 4) (Masuo et al., 1992; Simonneaux et al., 1998),
suggesting that PACAP is involved in the regulation of
the rhythmicity of melatonin production. Exposure of
pinealocytes to graded concentrations of PACAP en-
hances cAMP production (Rekasi and Czompoly, 2002)
and causes an increase in the activity of two key en-
zymes of the melatonin biosynthetic pathway, serotonin-
N-acetyltransferase (Yuwiler et al., 1995; Schomerus et
al., 2002) and hydroxyindole-O-methyltransferase (Ri-
belayga et al., 1997). Consistent with these observa-
tions, PACAP has been found to stimulate melatonin
secretion by perifused rat pineal glands (Simonneaux et
al., 1993) and cultured pinealocytes (Chik and Ho, 1995;
Simonneaux et al., 1998; Schomerus et al., 2002). The
stimulatory action of PACAP on melatonin release is
associated with calcium influx through L-type calcium
channels (Chik et al., 1997) and phosphorylation of
cAMP-responsive element-binding protein (CREB) (Scho-
merus et al., 1996, 1999). The effect of PACAP on CREB
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phosphorylation culminates in the first part of the dark
period of the 24-h cycle (Maronde et al., 1997) in con-
comitance with the peak of PACAP content in the pineal
gland (Fukuhara et al., 1998). PACAP causes phosphor-
ylation of CREB in the SCN during the light period, and
the effect of PACAP on CREB is suppressed by melato-
nin (Vanĕcek et al., 1987; Kopp et al., 1997; von Gall et
al., 1998). Likewise, melatonin blocks PACAP-induced
stimulation of cAMP production in the whole chicken
hypothalamus and in the rat SCN, indicating that the
hypothalamus is a site for a functional interaction be-
tween PACAP and the pineal hormone melatonin (von
Gall et al., 1998; Kopp et al., 1999; Nowak et al., 1999).
In the SCN, the effect of PACAP after light stimulation
involves an inhibition of calmodulin expression (Fahren-
krug et al., 2005).

PACAP interacts with glutamate to induce light re-
setting of the circadian clock (Gillette and Tischkau,
1999; Harrington et al., 1999; Hannibal et al., 2001b;
Bergström et al., 2003; Michel et al., 2006). Thus, in
rodents, PACAP enhances the phase delay provoked by
glutamate in the early night, and blockade of PACAP
neurotransmission inhibits the effect of glutamate
(Chen et al., 1999). Furthermore, light stimulation at
early night results in a larger phase delay in PAC1-R
knockout mice than in wild-type animals (Hannibal et
al., 2001a). However, subsequent examination of
PAC1-R knock-out mice under the more natural Ashoff
II light stimulation regime disclosed a significantly de-
creased phase delay of the endogenous rhythm at early
night (Hannibal et al., 2008). At late night, the phase
advance observed after light stimulation was attenuated
in PACAP(�/�) mice (Kawaguchi et al., 2003; Colwell et
al., 2004; Fahrenkrug et al., 2005; Beaulé et al., 2009)
and converted into a phase delay in PAC1-R knockout
animals (Hannibal et al., 2001a). The effects of PACAP
at the early subjective night seem to involve c-Fos, Per1,
and Per2 (Hannibal et al., 2001a), whereas late at night,
PACAP activates other mechanisms such as mitogen-
and stress-activated protein kinase 1 (Butcher et al.,
2005). Transgenic mice overexpressing the VPAC2-R re-
synchronize more quickly than wild-type animals (Shen
et al., 2000). Studies using exogenous application of VIP
and experiments in VIP- and VPAC2-R-deficient mice
indicate that VIP-ergic signaling plays an essential role
in maintenance of ongoing circadian rhythmicity, prob-
ably by synchronizing cells in the SCN (Harmar et al.,
2002; Reed et al., 2002; Colwell et al., 2003; Cutler et al.,
2003; Hughes et al., 2004; Aton et al., 2005; Maywood et
al., 2006).

In the chicken brain, as in the brain of rodents,
PACAP levels oscillate in a circadian manner (Somogy-
vári-Vigh et al., 2002); while in the avian pineal gland,
however, PACAP activates clock genes such as Clock or
Cry1 (Nagy and Csernus, 2007) and stimulates melato-
nin release; surprisingly, it does not affect the circadian
oscillator (Nakahara et al., 2002; Csernus et al., 2004). It

has been suggested that the effect PACAP could involve
the phosphorylation of the p38 MAPK (Racz et al., 2008).

Taken together, these data indicate that PACAP from
the retinohypothalamic tract acts as a cotransmitter
with glutamate to phase shift the SCN circadian rhythm
in a manner similar to light, whereas VIP, acting
through VPAC2-R, is necessary to maintain both the
amplitude and the synchrony of clock cells in the SCN.

3. Behavioral Actions. A number of behavioral con-
sequences of injection of peptides and gene deletion have
been reported that help in understanding the role of
PACAP in the central nervous system. These include the
control of food consumption, water drinking behavior,
sleep, pain-related behavior, emotion and psychomotor
functions, and memory performance.

There is now compelling evidence indicating that
PACAP is involved in the control of food consumption
(Matsuda and Maruyama, 2007). Intracerebroventricu-
lar injection of PACAP decreases food intake in mouse
(Morley et al., 1992), rat (Mizuno et al., 1998), chick
(Tachibana et al., 2003), and goldfish (Matsuda et al.,
2005a). In mouse, the anorexigenic action of PACAP is
mediated through the melacortinergic system (Mounien
et al., 2009). It has been reported that PACAP(�/�) mice
eat less than their littermates (Nakata et al., 2004). The
reason for this apparent discrepancy is currently un-
clear. Lower body weight with decreased fat mass in
normal temperature conditions have also been observed
in PACAP(�/�) mice (Adams et al., 2008; Tomimoto et
al., 2008), but this is not necessarily accompanied by
reduced food intake and could be ascribed to a deficit in
central cold-sensing mechanisms (Adams et al., 2008).

Injection of PACAP in the vicinity of the perifornical
lateral hypothalamus stimulates drinking (Puig de
Parada et al., 1995) and, reciprocally, water deprivation
causes an increase in PACAP immunoreactivity in the
subfornical organ (Nomura et al., 1997). It has been
suggested that vasopressin release in response to acute
dehydration is mediated through activation of PACAP
receptors by endogenous PACAP released within the rat
supraoptic nucleus (Gillard et al., 2006), and PACAP has
been shown to stimulate renin secretion via activation of
PAC1-R (Hautmann et al., 2007). These observations
show that PACAP plays a role in the regulation of drink-
ing behavior and body fluid balance after water depri-
vation.

Central administration of PACAP or VIP at dark on-
set enhances rapid eye movement sleep (Fang et al.,
1995; Ahnaou et al., 1999, 2000; Bourgin et al., 1999).
Consistent with these observations, dense accumulation
of PACAP-positive perikarya and nerve fibers is found in
the rapid eye movement sleep induction zone within the
pontine reticular formation (Ahnaou et al., 2006).

Several studies have evaluated the role of PACAP in
animal pain models, but whether the peptide exerts a
nociceptive or antinociceptive effect remains a matter of
debate (Dickinson and Fleetwood-Walker, 1999; Said,
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2000; Sándor et al., 2009). Indeed, in acute somatic and
visceral inflammatory models, PACAP decreases pain
transmission (Sándor et al., 2009). However, PAC1-R-
deficient mice exhibit a substantial decrease in chronic
inflammatory nociception (Jongsma et al., 2001), and
PACAP-deficient mice do not feel inflammatory or neu-
ropathic pain (Mabuchi et al., 2004) and exhibit a strong
decrease of pain perception in the abdominal writhing
test modeling visceral pain (Martin et al., 2003). PACAP
injection in the spinal cord induces a transient analgesia
followed by a long-lasting algesia (Shimizu et al., 2004).
On the whole, PACAP does not seem to interfere with
response to acute pain but could be involved in the
development of chronic pain transmission, which sug-
gests that PAC1-R might be a potential target for the
treatment of inflammatory and neuropathic pain.

Intracerebroventricular injection of PACAP enhances
grooming (Morley et al., 1992), increases locomotor ac-
tivity, and promotes rearing behavior in rat (Masuo et
al., 1995). Likewise, subcutaneous injection of PACAP38
in rat pups before P14, when the blood-brain barrier is
not fully functional, enhances locomotor activity and
rearing behavior at P21 (Reglodi et al., 2003). In ovo
treatment of chicken embryos with PACAP(6–38) dur-
ing the first half of embryonic life causes changes in
motor and social behavior that are still observed 2 weeks
after birth (Hollósy et al., 2004). Local microinfusion of
PACAP into the central nucleus of the amygdala induces
manifestations of stress and fear (Legradi et al., 2007).
Behavioral studies in PACAP or PAC1-R mutant mice
provide further evidence for the involvement of PACAP
in the control of psychomotor behaviors. Thus, PAC1-R-
deficient mice exhibit increased locomotor activity, re-
duced anxiety-like behavior (Otto et al., 2001b), and
markedly impaired social behavior (Nicot et al., 2004),
suggesting that PAC1-R signaling plays a role in the
development and/or functioning of neural pathways as-
sociated with pheromone processing and regulation of
social interaction. Likewise, PACAP-deficient mice dis-
play behavioral abnormalities, including increased loco-
motor, exploratory, and explosive jumping activity in the
open field (Hashimoto et al., 2001). These mice also show
deficit in prepulse inhibition of the acoustic startle re-
sponse, an operational measure of sensorimotor gating
(Tanaka et al., 2006). Most of these abnormalities are
attenuated by the atypical antipsychotic drug risperi-
done (Hashimoto et al., 2007). Oddly enough, increased
exploratory behavior in PACAP-deficient mice is im-
proved by amphetamine (Tanaka et al., 2006), although
these animals show normal methamphetamine-induced
behavioral sensitization (Fujii et al., 2007). In PAC1-R
mutants, an increase in physical morphine-withdrawal
symptoms is observed (Martin et al., 2003).

The behavioral consequences of targeted deletion of
PAC1-R in learning and memory have also been docu-
mented. Mutant mice harboring either complete or fore-
brain-specific inactivation of PAC1-R suffer from a def-

icit in contextual fear conditioning, a hippocampus-
dependent associative learning paradigm, and an
impairment of long-term potentiation of mossy fiber-
CA3 synapses (Otto et al., 2001a). In contrast, water
maze spatial memory is unaffected in PAC1-R mutants
(Sauvage et al., 2000; Otto et al., 2001a). In line with
these observations, intracerebroventricular injection of
very low doses of PACAP improves passive avoidance
memory in rat (Sacchetti et al., 2001). It is possibly
related that in Drosophila melanogaster, mutation in
the PACAP-like neuropeptide gene amnesiac affects
both learning, memory, and sleep (Feany and Quinn,
1995; DeZazzo et al., 1999; Hashimoto et al., 2002;
Keene et al., 2004; Liu et al., 2008).

4. Neurotrophic Actions. The presence of high con-
centrations of PACAP and its receptors in germinative
areas of the developing brain indicates that the peptide
may exert important functions during ontogenesis of the
CNS. Indeed, PACAP exerts neurotrophic activities on
many cell types (Yuhara et al., 2001; Erhardt and Sher-
wood, 2004; Nielsen et al., 2004; Reglodi et al., 2004;
Reglödi et al., 2006; Shioda et al., 2006). In cerebellar
granule cells cultured in conditions promoting apoptosis,
PACAP inhibits programmed cell death (Campbell and
Scanes, 1992; Canonico et al., 1996; Cavallaro et al.,
1996; Chang et al., 1996; Gonzalez et al., 1997; Villalba
et al., 1997) and stimulates neurite outgrowth (Fig. 9)
(Gonzalez et al., 1997). PACAP has also been shown to
rescue cerebellar granule cells from the deleterious ac-
tions of toxic molecules such as 4-hydroxynonenal (Ito et
al., 1999), ethanol (Fig. 10) (Vaudry et al., 2002d), hy-
drogen peroxide (Vaudry et al., 2002c), ceramides
(Vaudry et al., 2003a,b; Falluel-Morel et al., 2004) and
cisplatin (Aubert et al., 2008). In cultured granule neu-
rons, PACAP, acting through the PAC1-R (short and hop
variants), stimulates cAMP production and polyphos-
phoinositide hydrolysis (Gonzalez et al., 1994; Basille et
al., 1995; Favit et al., 1995; Villalba et al., 1997). The
effect of PACAP on granule cell differentiation is asso-
ciated with accumulation of actin at the emergence cone
and phosphorylation of Tau protein (Falluel-Morel et al.,
2005). The neuroprotective effect of PACAP on granule
neurons involves AC activity and is blocked by a domi-
nant-negative mutant of PKA (Kienlen Campard et al.,
1997). Downstream of PKA, PACAP induces phosphor-
ylation of ERK through Rap1 and Ras activation (Vil-
lalba et al., 1997; Obara et al., 2007). This activation of
ERK is required for the long-lasting inhibition of
caspase-3 activity (Vaudry et al., 2000a; Falluel-Morel et
al., 2004) and contributes to the neuroprotective effect of
PACAP (Vaudry et al., 2003a).

It has long been known that PACAP regulates c-fos
gene expression through the PKA pathway (Fig. 11)
(Vaudry et al., 1998a,b), but only recently has c-fos been
shown to stimulate B-cell lymphoma 2 (Bcl-2) expression
(Aubert et al., 2006; Botia et al., 2007). Downstream of
Bcl-2, PACAP prevents cytochrome c release and inhib-
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its caspase-9 activation, which in turn regulates
caspase-3 (Fig. 11). The inhibitory effect of PACAP on
potassium channels also contributes to the control of cell
death (Zerr and Feltz, 1994; Mei et al., 2004; Castel et
al., 2006). It has been proposed that activation by
PACAP of the phosphatidylinositol 3�-OH kinase (PI3-K)
neuroprotective pathway may synergize with the PKA
cascade to promote cell survival (Fig. 11) (Bhave and
Hoffman, 2004). There is also evidence that PACAP
stimulates Rap and p38 MAPK through exchange factor
directly activated by cAMP to mobilize intracellular
Ca2� stores (Fig. 11) (Ster et al., 2007). This pathway
may contribute to the maturation of granule precursors
into excitable neurons. In support of this notion, PACAP
has been shown to enhance the release of glutamate
induced by granule cell depolarization (Aoyagi and Ta-
kahashi, 2001). Activation of calcium influx through L-
type voltage-dependent calcium channels by PACAP
also induces VIP expression (Fukuchi et al., 2004). In
addition to VIP, PACAP can increase its own expression,
thus promoting, in an autocrine manner, cerebellar
granule cell survival. In this way, short-term PACAP
exposure can be turned into a long-term action (Tabuchi
et al., 2001a,b; Vaudry et al., 2005). Furthermore, be-
sides its direct action on the intrinsic apoptotic pathway,
PACAP promotes the expression of antioxidant proteins
(Botia et al., 2008) and transactivation of PAC1-R con-
tributes to the insulin-like growth factor neuroprotective
activity (Delcourt et al., 2007).

Sonic hedgehog (Shh), which is produced by Purkinje
neurons, stimulates the proliferation of granule cells
during ontogenesis (Dahmane and Ruiz i Altaba, 1999).
Although the different stages of cerebellar development
are well described, the molecular mechanisms that are
responsible for the transition of granule neurons from a
proliferation to a differentiation state are still poorly
understood. Thus, it is interesting to note that PACAP
significantly reduces the effect of Shh on granule cell
proliferation (Nicot et al., 2002). Related to the growth
inhibitory effect of PACAP, it has been shown that the

zinc finger transcription factor Lot1, which acts as a
tumor suppressor gene, is induced by PACAP in these
cells in a cAMP-, PKA- and ERK-dependent manner
(Contestabile et al., 2005; Fila et al., 2009). The effect of
PACAP on the histogenesis of the rat cerebellum has
also been investigated in vivo (Vaudry et al., 1999).
Injection of PACAP at the surface of the cerebellum of
8-day-old pups induces a transient enlargement of the
volume of the cerebellar cortex, with a maximal effect at
P12, which can be accounted for by an increase in the
number of granule cells in the IGL (Vaudry et al.,
2000b). The observation that PACAP knockout mice ex-
hibit a significant reduction of the thickness of the EGL
at P4 and the IGL at P7, associated with a decrease of
synaptophysin expression and an increase of caspase-3
activity (Allais et al., 2007), strongly suggests that
PACAP may exert a physiological role in the develop-
ment of the rat cerebellum. Disruption of the PACAP
gene in ptc1 mutant mice has been shown to signifi-
cantly increase the occurrence of medulloblastoma (Le-
lievre et al., 2008). Besides its effect on cell proliferation,
survival, and differentiation, PACAP has now been
shown to inhibit granule cell migration (Fig. 12) (Fal-
luel-Morel et al., 2005; Cameron et al., 2007, 2009).
Although the effect of PACAP on cell migration is ro-
bust, it lasts for only approximately 2 h as the result of
a desensitization process that involves protein kinase C
activation. Likewise, the PACAP(6–38) antagonist sup-
presses the transient pause of granule neurons that
naturally occurs at the level of Purkinje cells, indicating
that endogenous PACAP plays a physiological role in the
control of granule cell migration during cerebellar devel-
opment (Komuro and Rakic, 1998). The observation that
PACAP mediates growth cone attraction in cultured X.
laevis neurons (Guirland et al., 2003) suggests that
PACAP may be involved in the elongation of the leading
process before migration of granule cells through the
molecular layer (Komuro and Rakic, 1998).

In cortical neuron precursors, PACAP decreases the
proportion of mitotic cells and promotes neuroblast dif-

A B C

FIG. 10. Microphotographs illustrating the effect of PACAP on ethanol-induced cerebellar granule cell death. The microphotographs show granule
cells cultured in control conditions (A), in the presence of 200 mM ethanol (B), or in the presence of 200 mM ethanol plus 10�7 M PACAP (C). Living
cells are labeled with calcein (green fluorescence), and dead cells are labeled with propidium iodide (red fluorescence). Scale bar, 10 �m. [Reprinted
from Vaudry D, Rousselle C, Basille M, Falluel-Morel A, Pamantung TF, Fontaine M, Fournier A, Vaudry H, and Gonzalez BJ (2002d) Pituitary
adenylate cyclase-activating polypeptide protects rat cerebellar granule neurons against ethanol-induced apoptotic cell death. Proc Natl Acad Sci
U S A 99:6398–6403. Copyright © 2002 National Academy of Sciences of the United States of America.]

PITUITARY ADENYLATE CYCLASE-ACTIVATING POLYPEPTIDE 315



ferentiation (Lu and DiCicco-Bloom, 1997, 1998; Lu et
al., 1998; Suh et al., 2001). PACAP has also been shown
to contribute to the formation of the neuronal laminas in
the developing cerebral cortex (Ohtsuka et al., 2008),
and overexpression of PAC1-R leads to a dose-dependent
hydrocephalus (Lang et al., 2006). The antimitogenic
activity of PACAP on cortical neurons is mediated

through the PAC1-R short variant expressed in these
cells, which strongly inhibits p57Kip2-dependent CDK2
activity (Nicot and Dicicco-Bloom, 2001; Carey et al.,
2002). Cortical neuroblasts, cultured in the presence of
serum, turn into mature neurons that express gluta-
mate and its receptors. It should be recalled that micro-
molar concentrations of glutamate exert a modest pro-
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FIG. 11. Schematic representation of the intracellular mechanisms that are likely to be involved in the neurotrophic activities of PACAP on
cerebellar granule cells. Bax, Bcl-2-associated X protein; Bcl-2, B-cell lymphoma 2; BDNF, brain-derived neurotrophic factor; caspase, cysteinyl-
aspartate-cleaving protease; cFos, Finkel Biskis Jinkins osteosarcoma-related oncogene; cJun, jun oncogene; cytC, cytochrome c; DAG, diacylglycerol;
Epac, exchange factor directly activated by cAMP; Gli1, glioma-associated oncogene homolog 1; IP3, inositol 1,4,5-trisphosphate; G, guanine-nucleotide
binding regulatory protein; Lot1, lost on transformation 1; NR1, NMDA receptor subunit 1; p38, p38 mitogen-activated protein kinase; PAC1-R,
PACAP-specific receptor; PP2A, protein phosphatase 2A; Ptc1/Smo, patched 1/ smoothened complex; Raf, Raf proto-oncogene serine/threonine-protein
kinase; Rap1, small GTPase of the RAS oncogene family; Ras, retrovirus-associated DNA sequences; RNApol II, RNA polymerase II; Rit, Ras-like
GTPase without CAAX 1; Shh, sonic hedgehog; Src, sarcoma viral oncogene homolog; Tau, neuron-specific microtubule-associated protein; TrkB,
tropomyosine-related kinase B; 2, activation; �, inhibition.
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tective action on cortical neurons in primary culture,
whereas millimolar concentrations of glutamate induce
apoptotic cell death (Choi et al., 1987; Koh et al., 1991;
Sagara and Schubert, 1998). In this model, PACAP po-
tentiates the effect of otherwise marginally effective con-
centrations of glutamate (� 1 �M) on c-fos expression
(Martin et al., 1995), arachidonic acid release (Stella and
Magistretti, 1996; Magistretti et al., 1998), and brain-
derived neurotrophic factor (BDNF) production (Pellegri
et al., 1998; Zink et al., 2004). Moreover, PACAP pro-
tects cultured cortical neurons from the cytotoxic effect
of high (�1 mM) concentrations of glutamate (Morio et
al., 1996). Excitotoxic doses of glutamate also substan-
tially increase PACAP mRNA expression, and the
PACAP receptor antagonist PACAP(6–38) exacerbates
the deleterious effect of glutamate (Shintani et al.,
2005). Attenuation by PACAP of glutamate-induced
neurotoxicity has also been reported in cultured retinal
neurons (Shoge et al., 1999) and in neonatal brain le-
sions (Rangon et al., 2005; Favrais et al., 2007). Most of
the actions of PACAP on cortical neurons are mediated
through the cAMP pathway (Martin et al., 1995; Morio
et al., 1996), although it has been reported that PACAP
can directly modulate NMDA receptors independently of
intracellular second messengers (Liu and Madsen, 1997,
1998). On these neurons, PACAP prevents the neuro-
toxic effect of lipopolysaccharide (Kong et al., 1999) and
thrombin administration (Sanchez et al., 2009). The
neuroprotective effect of PACAP is mediated at least in
part indirectly through the release of BDNF (Frechilla et
al., 2001; Shintani et al., 2005). Indeed, PACAP has been
reported to induce the release of Rack1 from the NMDA
receptor complex, which induces its translocation to the
nucleus, where it activates BDNF expression (Yaka et
al., 2003). In mesencephalic dopaminergic neurons,
PACAP attenuates the neurotoxic effect of 6-hydroxydo-
pamine (Takei et al., 1998; Reglödi et al., 2006) and

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (Deguil et
al., 2009). Ischemic death of hippocampal neurons can
be prevented by intravenous infusion of PACAP (Uchida
et al., 1996). PACAP38 protects hippocampal neurons
from apoptosis by inhibiting the c-Jun N-terminal ki-
nase 1 (JNK)/stress-activated protein and p38 signaling
pathways (Dohi et al., 2002). It is noteworthy that
PACAP38 is still effective in preventing cell death when
administered several hours after ischemia (Reglodi et
al., 2000), and it preserves the neurovascular reactivity
after cerebral ischemia (Lenti et al., 2009), which sug-
gests that the peptide may have therapeutic potency for
the treatment of cerebral injuries. Pretreatment with
PACAP38 also reduces the infarct size induced by stroke
(Reglodi et al., 2002), and endogenous PACAP has been
shown to contribute to neuron protection in case of
stroke (Fig. 13) (Chen et al., 2006; Ohtaki et al., 2006).
The antiapoptotic effect of PACAP38 after ischemia is
indirect and involves IL-6 release (Ohtaki et al., 2006).
Some of the neuroprotective effects of PACAP38 may
also result from an inhibition of microglial activation
(Delgado, 2002; Delgado et al., 2002a; Lee and Suk,
2004; Suk et al., 2004; Yang et al., 2006). After focal
cerebral ischemia, the tumor suppressor protein p53 and
the zinc finger protein Zac-1 (two genes controlling
growth arrest and apoptosis) are up-regulated (Gillar-
don et al., 1998; Ciani et al., 1999). The p53 and Zac
proteins have been demonstrated to regulate the
PAC1-R gene, which, in the presence of PACAP38, can
attenuate the damages of ischemia. Consistent with this
finding, PACAP and PAC1-R mRNA expressions are
transiently increased in the cortex and the hippocampus
after traumatic brain injury (Skoglösa et al., 1999a;
Stumm et al., 2007). Besides its neuroprotective activity,
PACAP reduces the number of damaged axons after
traumatic injury (Farkas et al., 2004; Tamás et al.,
2006), favors dendrite outgrowth through the Rho
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FIG. 12. Time-lapse images showing that PACAP38 (1 �M) induces a rapid inhibition of cerebellar granule cell migration in the molecular layer
on P10 mouse cerebellar slices. Elapsed time (in minutes) is indicated on the bottom of each microphotograph. [Reprinted from Cameron DB, Galas
L, Jiang Y, Raoult E, Vaudry D, and Komuro H (2007) Cerebellar cortical-layer-specific control of neuronal migration by pituitary adenylate
cyclase-activating polypeptide. Neuroscience 146:697–712. Copyright © 2007 Elsevier Science. Used with permission.]

PITUITARY ADENYLATE CYCLASE-ACTIVATING POLYPEPTIDE 317



GTPase and PI3-K pathways in response to neuronal
activity (Henle et al., 2006) and enhances NMDA recep-
tor activity (Macdonald et al., 2005), which probably
contribute to functional recovery. PACAP also exerts a
neuroprotective effect against retinal degeneration in-
duced by carotid occlusion, kainic acid, and monosodium
glutamate (Babai et al., 2005, 2006; Seki et al., 2006b;
Atlasz et al., 2007, 2008). Considering the potential of
PACAP for development into neuroprotective agent, sta-
ble analogs that can cross the blood-brain barrier are
currently designed (Bourgault et al., 2008a; Dejda et al.,
2008), and viral vectors for targeted delivery into the
brain are being developed (Sanchez et al., 2008). It has
been shown that the passage of PACAP38 across the
blood brain barrier is transiently increased after isch-
emia (Somogyvári-Vigh et al., 2000), and antisense
mRNA directed against the PACAP transporter PTS-6
have been successfully used to inhibit PACAP27 efflux
(Nonaka et al., 2005; Dogrukol-Ak et al., 2009). Never-
theless, to foresee potential therapeutical applications,
PACAP should be administered at doses as low as pos-
sible to avoid adverse effects notably on arterial blood
pressure and heart rate (Ohtaki et al., 2004; Birk et al.,
2007). To avoid such side effects, some lipophilic deriv-
atives for intranasal administration have been devel-
oped (Gozes et al., 1999).

In dorsal root ganglia of embryos and newborn rats,
the PACAP gene is expressed in sensory neurons (Li-
oudyno et al., 1998), and PACAP mRNA levels are up-
regulated by axotomy (Zhang et al., 1996, 1998). Treat-
ment of cultured ganglion neurons with PACAP
increases cell survival and promotes neurite outgrowth
(Lioudyno et al., 1998). In the same way, PACAP in-
creases neuronal survival after spinal cord compression
(Chen and Tzeng, 2005), suggesting that PACAP could
have beneficial effects in tissue restoration after nerve
injury. Consistent with this hypothesis, PACAP and
PAC1-R mRNAs are up-regulated for as long as 30 days
after facial motor neuron axotomy (Zhou et al., 1999b)
and nerve regeneration is impaired in PACAP(�/�) an-
imals (Armstrong et al., 2008).

PACAP contributes to synaptic transmission by en-
hancing NMDA receptor (Macdonald et al., 2005; Mac-
Donald et al., 2007; Yang et al., 2009), increasing elec-
trical activity (Di Mauro et al., 2003), and modulating
AMPA receptor (Costa et al., 2009) in the hippocampus.
PACAP has been shown to promote differentiation of
embryonic stem cells into neurons and differentiation of
neural stem cells into astrocytes (Vallejo and Vallejo,
2002; Cazillis et al., 2004; Ohno et al., 2005; Chafai et
al., 2006; Hirose et al., 2006; Watanabe et al., 2006;
Nishimoto et al., 2007). In cells that differentiate into
neurons, expression of PAC1-R is increased, whereas the
level of expression decreases in cells with a glial pheno-
type (Hirose et al., 2005). PACAP-evoked differentiation
of precursor cells into astrocytes is mediated by cAMP,
PKC�, and calcium, involves coactivation of Ras and
Rap1, and recruits the transcriptional repressor
DREAM, an activator of GFAP gene expression (Cebolla
et al., 2008; Lastres-Becker et al., 2008).

To summarize, during development, PACAP exerts
neurotrophic activities to modulate cell proliferation,
promote cell survival, inhibit cell migration, and stimu-
late cell differentiation. The effects of PACAP can be
modulated during development according to the splice
variants expressed. In adults, PACAP can rescue in-
jured neurons from apoptosis, which suggests that it
could be a useful molecule for the treatment of stroke or
of neurodegenerative diseases.

5. Actions on Glial Cells. Consistent with the occur-
rence of the PAC1-R-short and -hop splice variants in
astroglial cells (Hashimoto et al., 2003), PACAP has
been shown to stimulate cAMP production (Hashimoto
et al., 2003; Masmoudi et al., 2003; Jozwiak-Bebenista et
al., 2007; Nowak et al., 2007), to promote polyphospho-
inositide turnover (Masmoudi et al., 2003; Dejda et al.,
2006), to mobilize intracellular calcium stores (Tatsuno
and Arimura, 1994), and to activate a quinine-sensitive
potassium outward current (Ichinose et al., 1998) in rat
astrocytes. The effect of PACAP on cAMP production
involves neurofibromin, a protein controlling astrocyte
proliferation (Dasgupta et al., 2003). In brain slices from
newborn rat, PACAP enhances the number of glial pre-

FIG. 13. Brain tissue sections 24 h after permanent middle cerebral
artery occlusion in PACAP(�/�), PACAP(�/�), and PACAP(�/�) mice,
demonstrating the crucial role of endogenous PACAP in reducing neuro-
nal damages caused by ischemia. [Reprinted from Ohtaki H, Nakamachi
T, Dohi K, Aizawa Y, Takaki A, Hodoyama K, Yofu S, Hashimoto H,
Shintani N, Baba A, Kopf M, Iwakura Y, Matsuda K, Arimura A, and
Shioda S (2006) Pituitary adenylate cyclase-activating polypeptide
(PACAP) decreases ischemic neuronal cell death in association with IL-6.
Proc Natl Acad Sci U S A 103:7488–7493. Copyright © 2006 National
Academy of Sciences of the United States of America.]
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cursor cells that express the proenkephalin-A gene in the
neocortical subventricular zone (Just et al., 1998) and on
cultured cells, PACAP promotes glutamate transport
and metabolism (Figiel and Engele, 2000; Goursaud et
al., 2008). In the presence of PACAP, glial cells also
release interleukins (Seki et al., 2006a) and gliotrans-
mitters (Masmoudi et al., 2003; Masmoudi-Kouki et al.,
2006). Intraperitoneal administration of a VIP antago-
nist induces a marked reduction of the density of astro-
cytes in the cortex of E17 mouse embryos, and this effect
is reversed by cotreatment with PACAP or the VPAC2-R
agonist RO 25-1553 (Zupan et al., 1998), indicating that
PACAP and/or VIP are involved in neocortical astrocy-
togenesis. In vitro, at picomolar concentrations, PACAP
stimulates proliferation of astrocytes in a cAMP/ERK-
dependent, PKA-independent manner (Moroo et al.,
1998; Hashimoto et al., 2003; Li et al., 2005). In contrast,
at nanomolar concentrations, PACAP has no more effect
on ERK phosphorylation and reduces astrocyte prolifer-
ation by inhibiting the RhoA GTPase activity (Hashi-
moto et al., 2003; Meyer et al., 2005). RhoA and PI3-K
inactivation are also involved in PACAP-induced astro-
cyte stellation (Ikeda et al., 2003; Perez et al., 2005).

In astrocytes, PACAP increases the production of var-
ious neurotrophic factors that can promote neuronal
proliferation and/or differentiation (Ashur-Fabian et al.,
1997). In particular, PACAP activates the expression
and release of ciliary neurotrophic factor, activity-de-
pendent neuroprotective protein, IL-6, glial cell line-
derived neurotrophic factor, MIP, and regulated on
activation normal T cell expressed and secreted
(Gottschall et al., 1994; Nagao et al., 1995; Brenneman
et al., 2002, 2003; Delgado et al., 2002a; Kimura et al.,
2003; Zusev and Gozes, 2004; Dejda et al., 2005; Naka-
machi et al., 2006; Nakatani et al., 2006). PACAP may
also affect the expression of other neurotrophic factors,
such as the protease nexin-1 or neurotrophin-3, known
to be regulated by VIP. However, some of the neuropro-
tective effects of VIP that involve astrocytes are not
mimicked by PACAP (Gressens et al., 1997, 1998a,b,
1999; Grimaldi and Cavallaro, 1999). These VIP-specific
effects could be mediated through the PAC1-R splice
variant hop2 (Pilzer and Gozes, 2006). Besides, the effect
of PACAP on IL-6 release by astrocytes seems to be
implicated in the neuroprotective action of the peptide in
case of stroke (Ohtaki et al., 2006). The regulatory effect
of PACAP on glycogen metabolism in astrocytes may
also contribute to the neuroprotective effect of astrocytes
(Masmoudi-Kouki et al., 2007). Finally, on these cells,
PACAP attenuates histamine release, which may con-
tribute to the anti-inflammatory activity of the peptide
(Hansson et al., 2009).

Taken together, these data provide clear evidence
that, in glial cells, PACAP plays a key role in the control
of cell proliferation, plasticity, glycogen metabolism, and
release of neurotrophic factors. It is noteworthy that
PACAP acts at very low concentrations on astrocytes,

that suggests that these cells may mediate many of the
activities of PACAP in the brain.

B. Effects of Pituitary Adenylate Cyclase-Activating
Polypeptide on the Pituitary Gland

The ability of PACAP to stimulate cAMP formation in
pituitary cells provided the first evidence that the pep-
tide may act as a hypophysiotropic neurohormone
(Christophe, 1993; Arimura and Shioda, 1995; Nussdor-
fer and Malendowicz, 1998). The action of PACAP on the
adenohypophysis has been reviewed in detail by Rawl-
ings and Hezareh (1996). Among the different hypophy-
siotropic neuropeptides identified so far, the situation of
PACAP is rather unique in that PACAP receptors are
expressed by all endocrine cell types as well as by fol-
liculostellate cells of the adenohypophysis (Vigh et al.,
1993). Cytofluorimetric studies, conducted on dispersed
rat pituitary cells, have shown that PACAP, acting
through three different mechanisms, induces calcium
elevation in all categories of endocrine cells (Canny et
al., 1992; Gracia-Navarro et al., 1992; Rawlings et al.,
1993, 1994; Rawlings and Hezareh, 1996; Alarcón and
García-Sancho, 2000). Consistent with this observation,
PACAP stimulates the release of GH, adrenocortico-
tropin, LH, follicle-stimulating hormone (FSH), PRL
(Goth et al., 1992; Hart et al., 1992; Coleman and Ban-
croft, 1993; Koch and Lutz-Bucher, 1993; Perrin et al.,
1993; Arbogast and Voogt, 1994; Hashizume et al., 1994;
Velkeniers et al., 1994; Coleman et al., 1996; Martínez-
Fuentes et al., 1998c; Ortmann et al., 1999) and soma-
tolactin (Azuma et al., 2009). The effects of PACAP on
the different pituitary cell types are summarized in
Table 9.

1. Gonadotrope Cells. Gonadotropin secretion is pre-
dominantly regulated by GnRH (Conn et al., 1981; Char-
lton, 2008). There is now evidence that PACAP acts
either alone or synergistically with GnRH to stimulate
LH and FSH mRNA expression (Tsujii and Winters,
1995; Tsujii et al., 1995; McArdle and Counis, 1996;
Winters et al., 1997) and gonadotropin secretion (Culler
and Paschall, 1991; Schomerus et al., 1994; Tsujii et al.,
1994, 1995; Petersen et al., 1996; Ortmann et al., 1999;
Counis et al., 2007). In the male rat, intra-atrial injec-
tion of PACAP, but not VIP, increases plasma LH level
(Osuga et al., 1992). Perifusion of rat anterior pituitary
cells with PACAP induces a transient stimulation of
gonadotropin release and a concomitant increase in cy-
tosolic calcium concentration (Canny et al., 1992; Raw-
lings et al., 1994; Tsujii et al., 1994). The effect of
PACAP on gonadotropin, nitric-oxide synthase I, and
estrogen receptor expression involves the cAMP/PKA
pathway (Ishizaka et al., 1993; Winters et al., 1997;
Schreihofer et al., 2001; Garrel et al., 2002), whereas its
acute action on FSH/LH release is under the control of
calcium elevation (Canny et al., 1992; Masumoto et al.,
1995). Besides its direct action on gonadotropin release,
PACAP has also been shown to increase rat GnRH re-
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ceptor gene promoter activity through the cAMP/PKA
pathway (Cheng and Leung, 2001; Ngan et al., 2001;
Pincas et al., 2001; Sadie et al., 2003). Conversely GnRH
stimulates PACAP gene expression (Grafer et al., 2009).
Furthermore, GnRH agonists can inhibit PACAP-in-
duced cAMP production by phosphorylation of PAC1-R
through the PKC pathway (Larivière et al., 2006, 2008),
illustrating the complex interplay between GnRH and
PACAP in the regulation of gonadotrope cell functions.

2. Somatotrope Cells. Secretion of GH is stimulated
by GHRH and ghrelin, and inhibited by somatostatin
(Castaño et al., 2005; Broglio et al., 2006). Administra-
tion of PACAP to cultured pituitary cells causes a sig-
nificant increase in both GH mRNA expression and GH
release (Velkeniers et al., 1994; Rousseau et al., 1999;
Wong et al., 2005). In contrast, PACAP does not modify
GH secretion from superfused cells (Velkeniers et al.,
1994), suggesting that the stimulatory effect of PACAP
on pituitary cells in static incubation involves the para-
crine mediation of other hormones. PACAP exerts an
additive effect on GHRH-stimulated GH output (Hashi-
zume et al., 1994), and the stimulatory activity of
PACAP on GH release is inhibited by addition of soma-
tostatin (Goth et al., 1992; Hashizume et al., 1994). In
fish, both PACAP and PRP stimulate GH secretion
(Montero et al., 2000). In particular, PACAP provokes a
robust increase of GH release from goldfish (Wong et al.,
1998, 2000; Mitchell et al., 2008) and eel pituitary cells
(Montero et al., 1998). PACAP increases intracellular

calcium concentration in carp, frog, chicken, and rat
somatotrope cells (Canny et al., 1992; Gracia-Navarro et
al., 1992; Yada et al., 1993; Scanes et al., 2007), and the
PACAP-evoked calcium response is blocked by the PKA
antagonist 3�,5�-cyclic monophosphorothioate, Rp-iso-
mer, indicating that the effect of PACAP is mediated
through activation of the cAMP/PKA pathway and sub-
sequent activation of the Ca2�/calmodulin-dependent
protein kinase cascade (Rawlings et al., 1993, 1995;
Alarcón and García-Sancho, 2000; Wong et al., 2005).
The elevation of cytosolic calcium plays a pivotal role in
PACAP-induced GH secretion (Martínez-Fuentes et al.,
1998a,b,c). The maximal effect of PACAP on GH release
is observed after 15 min of treatment, whereas pro-
longed incubation or pretreatment with PACAP causes
desensitization of the secretory response (Goth et al.,
1992; Wei et al., 1993).

3. Lactotrope Cells. The secretion of PRL is predom-
inantly under the tonic inhibitory control exerted by
dopamine (Martinez de la Escalera and Weiner, 1992).
The secretory activity of lactotrope cells is also regu-
lated by various hypothalamic neuropeptides (Ruberg
et al., 1981; Hinuma et al., 1998; Galas et al., 2009). In
particular, VIP and to a lesser extent PHI and secretin
stimulate PRL secretion (Vijayan et al., 1979; Enjal-
bert et al., 1980; Kimura et al., 1987; Muratori et al.,
1994; Judd, 1995; Youngren et al., 1998). In fact,
PACAP is more potent than other members of the
family in stimulating PRL secretion because intrave-

TABLE 9
Effects of PACAP on pituitary cells

Cell type Second Messenger Coupling Hormone Release and/or
mRNA Expression References

Gonadotrope cells 1 cAMP, 1 IP turnover,
1 �Ca2��i,
1 NOS 1

1/3 LH release,1/3 FSH
release, 1 LH mRNA,
3 FSH mRNA

Miyata et al., 1989; Culler and Paschall, 1991;
Canny et al., 1992; Gracia-Navarro et al., 1992;
Leonhardt et al., 1992; Perrin et al., 1993;
Rawlings et al., 1993; Hashizume et al., 1994;
Garrel et al., 2002

Somatotrope cells 1 cAMP, 1 �Ca2��i 1/3 GH release Miyata et al., 1989; Canny et al., 1992; Goth et
al., 1992; Gracia-Navarro et al., 1992; Hart et
al., 1992; Jarry et al., 1992; Leonhardt et al.,
1992; Nagy et al., 1993; Rawlings et al., 1993;
Wei et al., 1993; Yada et al., 1993; Hashizume
et al., 1994; Velkeniers et al., 1994; Rousseau
et al., 1999; Wong et al., 2005; Scanes et al.,
2007

Lactotrope cells 1 �Ca2��i 1/2/3 PRL release,
1/3 PRL mRNA

Miyata et al., 1989; Gracia-Navarro et al., 1992;
Hart et al., 1992; Jarry et al., 1992; Leonhardt
et al., 1992; Nagy et al., 1993; Arbogast and
Voogt, 1994; Hashizume et al., 1994; Velkeniers
et al., 1994; Yamauchi et al., 1995; Matsuda et
al., 2008

Corticotrope cells 1 �Ca2��i 1/3 ACTH release Miyata et al., 1989; Culler and Paschall, 1991;
Canny et al., 1992; Gracia-Navarro et al., 1992;
Koch and Lutz-Bucher, 1993

Thyrotrope cells 1 �Ca2��i 1/3 TSH release Miyata et al., 1989; Canny et al., 1992; Gracia-
Navarro et al., 1992; Hart et al., 1992; Okada
et al., 2007

Folliculostellate cells 1 cAMP, 1 �Ca2��i 1 IL–6 release Miyata et al., 1989; Tatsuno et al., 1991c; Yada et
al., 1993; Bilezikjian et al., 2003

Fibroblasts 1 cAMP Koch and Lutz-Bucher, 1992b
Melanotrope cells 1 cAMP 1 BDNF release,

1 �–MSH release
Koch and Lutz-Bucher, 1992b; Kidane et al.,

2007, 2008

1, stimulatory effect; 2, inhibitory effect; 3, no effect; ACTH, adrenocorticotropin; NOS, nitric-oxide synthase.
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nous injection of PACAP to anesthetized rats induces
a 4-fold increase of plasma PRL concentration (Yam-
auchi et al., 1995). Consistent with this notion, PRL
levels are significantly reduced in PACAP knockout
animals (Isaac and Sherwood, 2008). The effect of
systemic administration of PACAP can be accounted
for, at least in part, by a direct action at the pituitary
level, because the peptide can also enhance plasma
PRL level in hypothalamus-lesioned animals (Jarry et
al., 1992). In vitro studies have confirmed that PACAP
exerts a direct stimulatory effect on cytosolic calcium
concentrations in fish, frog, and rat lactotrope cells
(Canny et al., 1992; Gracia-Navarro et al., 1992; Mat-
suda et al., 2008). It should be noted, however, that
PACAP increases the intracellular calcium level in
45% of PRL cells in frog (Gracia-Navarro et al., 1992)
but only in 9% of PRL cells in rat (Canny et al., 1992).
Studies aimed at investigating the effect of PACAP on
PRL secretion by pituitary cells have led to controver-
sial results. It has been initially reported that PACAP
is devoid of PRL-releasing activity in cultured rat
adenohypophysial cells (Miyata et al., 1989; Hart et
al., 1992). PACAP was also found to have no effect on
PRL release from cultured ovine (Sawangjaroen et al.,
1997) and bovine (Hashizume et al., 1994) pituitary
cells. In contrast, other studies have shown that
PACAP can either slightly increase (Arbogast and
Voogt, 1994) or inhibit (Jarry et al., 1992) PRL release
from rat pituitary cells. To elucidate the origin of
these apparent discrepancies, the effects of PACAP on
PRL secretion have been compared in cultures of dis-
persed or aggregated cells and in pituitary fragments
(Benter et al., 1995). In monolayer cultures, PRL re-
lease was inhibited by PACAP, whereas in cultures of
aggregated cells and in pituitary fragments, PRL out-
put was stimulated (Benter et al., 1995). These data
suggest that cell-to-cell communication plays a crucial
role in determining the type of action of PACAP on
PRL secretion. Whereas intravenous injection of
PACAP produces a significant increase in plasma PRL
concentration in rat (Jarry et al., 1992; Yamauchi et
al., 1995), systemic administration of PACAP has no
effect on PRL level in sheep (Sawangjaroen and Cur-
lewis, 1994), suggesting also the existence of marked
species differences.

Besides its hypophysiotropic action at the pituitary
level, PACAP may also regulate PRL secretion through
modulation of various hypothalamic factors. In particu-
lar, in lactating rat, intracerebroventricular administra-
tion of the antagonist PACAP(6–38) inhibits the PRL
surge induced by suckling (Tohei et al., 2001). In sheep,
injection of PACAP into the medial basal hypothalamus
stimulates dopamine release from tuberoinfundibular
neurons, leading to an inhibition of PRL secretion
(Anderson and Curlewis, 1998). PACAP has also been
found to decrease the activity of pyroglutamyl peptidase
II (Vargas et al., 1998), a TRH-specific ectoenzyme that

cleaves the pyroglutamyl-histidyl peptide bond of TRH
(Charli et al., 1998). Because TRH is known to activate
PRL secretion (Galas et al., 2009), the inhibition of py-
roglutamyl peptidase II induced by PACAP may cause
indirect stimulation of PRL release through reduction of
TRH degradation. Taken together, these data indicate
that PACAP may affect PRL secretion either via presyn-
aptic action on hypothalamic neurons or via postsynap-
tic regulation of the activity of hypophysiotropic neuro-
hormones.

4. Corticotrope Cells. The secretion of adrenocortico-
tropin is primarily regulated by CRH (Rivier et al.,
1982), and PACAP has been shown to activate CRH gene
expression in the rat PVN (Grinevich et al., 1997). In-
travenous administration of PACAP provokes a dose-
related increase in plasma adrenocorticotropin level in
human (Chiodera et al., 1996). The effect of PACAP on
circulating adrenocorticotropin in human is not mim-
icked by VIP, indicating that the peptide acts through
PAC1-R. In vitro, PACAP stimulates adrenocortico-
tropin secretion from superfused (Miyata et al., 1989) or
cultured rat pituitary cells (Hart et al., 1992). However,
in rat, the effect of PACAP on adrenocorticotropin secre-
tion by cultured cells does not reach significance until
24 h, suggesting that PACAP does not exert a direct
stimulatory action on corticotrope cells (Hart et al.,
1992). Other in vitro studies have shown that PACAP
does not stimulate adrenocorticotropin secretion from
rat pituitary cells within 3 h of incubation (Culler and
Paschall, 1991; Koch and Lutz-Bucher, 1993). In the frog
R. ridibunda, PACAP causes an increase in cytosolic
calcium concentration in 25% of corticotrope cells (Gra-
cia-Navarro et al., 1992) and stimulates adrenocortico-
tropin secretion within 4 h (Martinez-Fuentes et al.,
1994), indicating that, in amphibians, PACAP directly
activates corticotrope cells.

5. Thyrotrope Cells. In vivo administration of
PACAP does not affect plasma thyroid-stimulating hor-
mone (TSH) concentrations in rat (Hart et al., 1992) and
human (Chiodera et al., 1996). Consistent with this ob-
servation, only a few thyrotrope cells express PACAP
binding sites (Vigh et al., 1993), and PACAP does not
modify TSH secretion from cultured rat anterior pitu-
itary cells (Culler and Paschall, 1991). In frog, by con-
trast, PACAP increases free cytosolic calcium concentra-
tion in thyrotrope cells (Gracia-Navarro et al., 1992) and
stimulates TSH release from dispersed pituitary cells
(Okada et al., 2007, 2009).

6. Folliculostellate Cells. Besides endocrine cells, the
anterior pituitary encompasses a population of glial-like
cells named folliculostellate cells. Incubation of cultured
rat folliculostellate cells with PACAP causes stimulation
of cAMP formation, IL-6 production, and follistatin se-
cretion (Tatsuno et al., 1991c; Bilezikjian et al., 2003).
Likewise, PACAP increases cAMP level and stimulates
secretion of vascular endothelial growth factor, novel
neurotrophin-1/B-cell-stimulating factor-3, and IL-6 in
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the mouse folliculostellate-like cell line TtT/GF (Matsu-
moto et al., 1993; Gloddek et al., 1999; Lohrer et al.,
2001; Vlotides et al., 2004). Because IL-6 is involved in
the differentiation of pituitary cells (Renner et al., 1998)
and because it stimulates the release of various adeno-
hypophysial hormones (Renner et al., 1998), several in-
direct effects of PACAP on endocrine pituitary cells may
be mediated through activation of folliculostellate cells
(Benter et al., 1995). In support of this notion, PACAP,
added on cocultures of TtT/GF folliculostellate cells with
rat anterior pituitary cells, significantly reduces the ef-
fect of activin-A on FSH secretion through follistatin
release (Katayama et al., 2000).

7. Pituitary Fibroblasts. The anterior pituitary
gland also contains fibroblasts, a type of agranular con-
nective cells (Gospodarowicz, 1979). PACAP has been
shown to stimulate cAMP formation in cultured pitu-
itary fibroblasts, suggesting that the peptide may mod-
ulate fibroblast proliferation (Koch and Lutz-Bucher,
1992b).

8. Melanotrope Cells. The intermediate lobe of the
pituitary is composed of a homogeneous population of
cells, the melanotrope cells, which express the multi-
functional precursor protein POMC (Crine et al., 1978).
Post-translational processing of POMC in melanotrope
cells gives rise to the formation of the melanotropic
hormone �-MSH and the opioid peptide �-endorphin
(Mains and Eipper, 1979). In rat, PACAP stimulates
cAMP production and �-MSH release in cultured mela-
notrope cells (Koch and Lutz-Bucher, 1992a). PACAP
has also been found to increase POMC mRNA levels in
the rat pars intermedia (René et al., 1996). The stimu-
latory effect of PACAP on POMC gene expression and
�-MSH secretion is associated with calcium influx
through L-type calcium channels (Tanaka et al., 1997b).
In the frog X. laevis, PACAP stimulates POMC gene
expression in tissue culture of neurointermediate lobes
and triggers the secretory activity of perifused isolated
melanotrope cells (Kidane et al., 2007, 2008). Moreover,
PACAP-LI in the neural lobe of X. laevis is higher when
the animals are placed on an illuminated white environ-
ment, indicating that the peptide plays a physiological
role in the neuroendocrine control of melanotrope cells
during background color adaptation (Kidane et al., 2007,
2008). Indeed, the occurrence of PACAP mRNA in the
neurointermediate lobe of rat (Tanaka et al., 1997b),
frog (Alexandre et al., 2000b), and PAC1-R mRNA in the
rat pars intermedia (Shioda et al., 1997a) strongly sug-
gests that PACAP can act as a paracrine regulator of
melanotrope cell activity. In agreement with this hy-
pothesis, it has been shown that PACAP-LI in the neural
lobe increases when frogs are placed on a white back-
ground and that PACAP, acting through VPAC1-R, in-
duces the release of BDNF, which in turn stimulates
POMC biosynthesis and MSH secretion (Kidane et al.,
2007, 2008).

In conclusion, PACAP was initially discovered on the
basis of its ability to activate the production of cAMP in
rat anterior pituitary cells. Since then, PACAP has been
shown to differentially regulate the activity of all cell
types in the distal and intermediate lobes of the pitu-
itary, including the nonendocrine folliculostellate cells,
throughout the vertebrate phylum.

C. Effects of Pituitary Adenylate Cyclase-Activating
Polypeptide on the Thyroid Gland

In the human and porcine thyroid, PACAP has been
shown to stimulate cAMP production and to increase
thyroxine secretion (Chen et al., 1993; Kouki et al., 1997;
Bik et al., 2006).

D. Effects of Pituitary Adenylate Cyclase-Activating
Polypeptide on the Gonads

The presence of PACAP and its receptors in the testis
and ovary provides evidence that the peptide may oper-
ate as a local regulator of gonadal activity. In the rat
testis, the concentration of PACAP is significantly re-
duced after hypophysectomy and is restored by FSH
administration, indicating that the expression of
PACAP is under the control of pituitary gonadotropins
(Shuto et al., 1995). In vitro, PACAP induces a concen-
tration-dependent stimulation of testosterone secretion
from isolated rat Leydig cells (Romanelli et al., 1997;
Rossato et al., 1997; El-Gehani et al., 1998c) and acti-
vates or inhibits protein synthesis in spermatocytes or
spermatids, respectively (West et al., 1995). In Leydig
cells, PACAP activates both AC and PLC through an
interaction with PAC1-R (Romanelli et al., 1997). The
effect of PACAP on Leydig cells may also be mediated
via a novel receptor subtype coupled to a sodium channel
through a pertussis toxin-sensitive G protein (Rossato et
al., 1997). The effects of PACAP on protein synthesis in
spermatocytes and spermatids are both mimicked by
dibutyryl cAMP (West et al., 1995). In cultured Sertoli
cells, PACAP increases cAMP concentration and stimu-
lates estradiol and inhibin secretion (Heindel et al.,
1992). In the epididymal epithelium, PACAP stimulates
chloride secretion, which is important for sperm activa-
tion and storage (Zhou et al., 1997). The occurrence of
PACAP-immunoreactive material in epididymal tubules
indicates that PACAP is locally synthesized and thus
may act as a paracrine regulator of sperm maturation
(Zhou et al., 1997). The epithelium-derived PACAP may
also stimulate epididymal spermatozoa that have lost
the ability to produce PACAP (Shioda et al., 1994) but
still possess PACAP binding sites (Shivers et al., 1991).
In PACAP knock-out mice, testicular aging is delayed,
probably because the expression of steroidogenic factors
is impaired, which lowers the production of reactive
oxygen species that are responsible for apoptosis (La-
combe et al., 2006). In the human cavernous tissue,
PACAP dose dependently relaxes noradrenaline- and
electrically contracted preparations, suggesting that the
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peptide may be involved in the induction and mainte-
nance of penile erection (Hedlund et al., 1994, 1995). In
line with this finding, a stearic acid VIP conjugate has
been shown to increase the copulatory activity and pe-
nile reflex in castrated, testosterone-treated rats (Gozes
and Fridkin, 1992). These data suggest that PACAP
and/or VIP derivates could be developed for the treat-
ment of impotence.

The PACAP-ergic system also seems to be involved in
the reproductive function in female mice (Jamen et al.,
2000b; Shintani et al., 2002; Sherwood et al., 2007). In
the rat ovary, most granulosa and cumulus cells from
large preovulatory follicles contain both PACAP mRNA
and PACAP-LI (Gräs et al., 1996). Human chorionic
gonadotropin (hCG) induces a transient increase of both
PACAP and progesterone receptor mRNA expression
(Ko et al., 1999; Barberi et al., 2007). The peak of ex-
pression of progesterone receptor mRNA occurs 3 h after
hCG treatment and the peak of PACAP mRNA only
after 6 to 12 h, suggesting that progesterone receptor
activation is required for PACAP gene expression (Ko et
al., 1999; Sayasith et al., 2007). In support of this hy-
pothesis, it has been shown that blockage of progester-
one receptors with the selective antagonist ZK98299
abrogates the effect of hCG on PACAP gene expression
(Ko et al., 1999). The hCG-evoked stimulation of PACAP
gene transcription is mediated through the PKA path-
way and requires de novo protein synthesis (Ko et al.,
1999; Sayasith et al., 2007). Exposure of cultured gran-
ulosa cells to PACAP causes a concentration-dependent
increase in progesterone production (Zhong and Kasson,
1994; Apa et al., 1997a,b; Gräs et al., 1999; Usuki and
Kotani, 2001). Likewise, immunoneutralization of en-
dogenous PACAP reduces progesterone formation and
impairs subsequent luteinization, suggesting that
PACAP plays an important role in LH-induced proges-
terone production during the periovulatory period (Gräs
et al., 1999). Incubation of immature rat preovulatory
follicles with PACAP or VIP induces a dose-dependent
inhibition of follicle apoptosis (Flaws et al., 1995; Lee et
al., 1999b), reduces cell proliferation promoted by FSH
(Cecconi et al., 2004), and could be involved in the cyclic
recruitment of immature follicles (Gräs et al., 2005). In
luteinized granulosa cells, PACAP stimulates cAMP ac-
cumulation more potently than LH (Richards et al.,
1995; Heindel et al., 1996), promotes survival (Barberi et
al., 2007; Morelli et al., 2008), and increases plasmino-
gen activator expression (Apa et al., 2002). In addition,
neonatal administration of PACAP delays the first ovu-
lation (Szabó et al., 2002). In the human female genital
tract, PACAP is located in fibers innervating blood ves-
sels and smooth muscle cells of the internal cervical os
(Graf et al., 1995; Steenstrup et al., 1995). High concen-
trations of PACAP are also found throughout the human
uteroplacental unit (Steenstrup et al., 1996). In vitro,
PACAP induces relaxation of nonvascular smooth mus-
cle strips from the fallopian tube and myometrium

(Steenstrup et al., 1994, 1995) as well as stem villous
and intramyometrial arteries (Steenstrup et al., 1996),
suggesting that PACAP regulates the vascular tone in
the human female reproductive tract. In placental cells,
PACAP enhances cAMP formation, hCG and IL-6 pro-
duction (Desai and Burrin, 1994).

Altogether, these data demonstrate the crucial role of
PACAP in the regulation of the reproductive function. In
particular, in the male PACAP facilitates sperm matu-
ration, may contribute to penile erection and accelerates
testicular aging, while in the female, PACAP stimulates
progesterone production, prevents follicular apoptosis
and improves fertility.

E. Effects of Pituitary Adenylate Cyclase-Activating
Polypeptide on the Adrenal Gland

In adrenal chromaffin cells, PACAP exerts a stimula-
tory action on catecholamine secretion (Watanabe et al.,
1992, 1995; Isobe et al., 1993; Chowdhury et al., 1994;
Guo and Wakade, 1994; Houchi et al., 1994; Perrin et al.,
1995; Neri et al., 1996; Jorgensen et al., 2000; Fuku-
shima et al., 2002; Douglas et al., 2008; Valiante et al.,
2008). PACAP also stimulates the release of brain na-
triuretic peptide and enkephalins, two regulatory pep-
tides that are cosequestered with catecholamines in
chromaffin granules (Babinski et al., 1996; Hahm et al.,
1998) as well as a 15-fold increase in VIP mRNA expres-
sion (Lee et al., 1999a). The effect of PACAP on VIP
biosynthesis and catecholamine secretion requires the
coincident elevation of calcium and cAMP (Fukushima
et al., 2001b; Hamelink et al., 2002a; Morita et al., 2002).
It is noteworthy that the induction of VIP in septic shock
is blocked in PACAP deficient mice (Ait-Ali et al., 2009).
PACAP dose-dependently stimulates the release of the
secretogranin II-derived peptides secretoneurin (Tur-
quier et al., 2001) and EM66 (Guillemot et al., 2006). In
vivo studies have shown that PACAP and VIP stimulate
catecholamine release in anesthetized dogs through ac-
tivation of PAC1-R coupled to dihydropyridine-sensitive
L-type calcium channels (Gaspo et al., 1997; Geng et al.,
1997; Lamouche et al., 1999; Lamouche and Yamaguchi,
2001). PACAP-induced catecholamine secretion is sig-
nificantly greater after the induction of hypoglycemia
(Yamaguchi and Lamouche, 1999) and PACAP(�/�)
mouse exhibit a delayed normalization of plasma glu-
cose levels in response to insulin injection (Hamelink et
al., 2002b), suggesting that PACAP may play a benefi-
cial role in glucose counter-regulatory mechanisms in
the adrenal medulla during hypoglycemia. The effect of
PACAP on catecholamine secretion is associated with
activation of AC and elevation of cytosolic calcium con-
centrations (Isobe et al., 1993; Houchi et al., 1994; Isobe
et al., 1994; Perrin et al., 1995; Chamoux et al., 1998).
Incubation of adrenomedullary cells in calcium-free me-
dium or blockage of voltage-operated calcium channels
suppresses the PACAP-evoked stimulation of catechol-
amine secretion (Isobe et al., 1993; Houchi et al., 1995;
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Przywara et al., 1996; O’Farrell and Marley, 1997), in-
dicating that the effect of PACAP on chromaffin cells is
mediated through calcium influx. Concurrently, in bo-
vine and human, PACAP increases calcium levels from
ryanodine/caffeine-sensitive calcium stores (Houchi et
al., 1995; Tanaka et al., 1996, 1998; Shibuya et al., 1999;
Payet et al., 2003). The effect of PACAP on catechol-
amine release is associated with an increase in the ex-
pression of tyrosine hydroxylase, dopamine �-hydroxy-
lase, and phenylethanolamine N-methyltransferase
(Houchi et al., 1994; Rius et al., 1994; Isobe et al., 1996;
Marley et al., 1996; Tönshoff et al., 1997; Hong et al.,
1998; Choi et al., 1999; Park et al., 1999). It has been
shown that the stimulatory effect of PACAP on tyrosine
hydroxylase activity is mediated through activation of
the AC/PKA transduction pathway (Marley et al., 1996)
and can be accounted for by phosphorylation of TH at
Ser40 (Bobrovskaya et al., 2007). The involvement of
PACAP in adrenochromaffin cell development is not yet
ascertained: on the one hand, PACAP has been reported
to stimulate proliferation of rat chromaffin cells in pri-
mary culture (Tischler et al., 1995); on the other hand,
PACAP inhibits the mitogenic effect of nerve growth
factor on chromaffin cells (Frödin et al., 1995; Tischler et
al., 1995). Finally, the adrenal medulla of PACAP(�/�)
mouse exhibits normal catecholamine levels (Gray et al.,
2002; Hamelink et al., 2002b).

Intravenous administration of PACAP causes eleva-
tion of plasma cortisol levels in dog and calf (Edwards
and Jones, 1994; Kawai et al., 1994). PACAP stimulates
corticosterone and aldosterone secretion from human,
rat, and chicken adrenal slices, but does not affect the
release of corticosteroids from dispersed fasciculata and
glomerulosa cells (Andreis et al., 1995; Neri et al., 1996;
Mazzocchi et al., 1997), suggesting that the response of
adrenocortical cells to PACAP involves the contribution
of another adrenal cell type. Exposure of human adrenal
slices to the �-adrenergic receptor blocker l-alprenolol
totally suppresses the steroidogenic effect of PACAP
(Neri et al., 1996). Likewise, the action of PACAP on
dehydroepiandrosterone and cortisol secretion by the
fetal human adrenal gland is suppressed by the �-adre-
noreceptor antagonist propranolol (Breault et al., 2000).
Altogether, these observations indicate that, in several
mammalian species, the effect of PACAP on corticoste-
roid secretion can be ascribed to the stimulatory action
of the peptide on catecholamine secretion. In contrast,
PACAP was found to stimulate corticosteroid release
from dispersed bovine and frog adrenocortical cells (Yon
et al., 1993b, 1994; Bodart et al., 1997). The fact that
PACAP stimulates cAMP and inositol phosphate forma-
tion in bovine glomerulosa cells (Bodart et al., 1997) and
calcium mobilization in individual frog adrenocortical
cells (Yon et al., 1994) provides additional evidence for a
direct stimulatory effect of the peptide on steroidogene-
sis in these two species.

In summary, PACAP stimulates the release of cat-
echolamines and regulatory peptides from adrenochro-
maffin cells, and triggers steroid hormone secretion from
adrenocortical cells. It has been suggested that PACAP
may function as an emergency response factor in the
case of prolonged metabolic stress. PACAP may also
contribute to the development and differentiation of the
adrenal gland.

F. Effects of Pituitary Adenylate Cyclase-Activating
Polypeptide on the Gastrointestinal Tract

The presence of PACAP in various exocrine glands of
the alimentary canal and in neuronal structures (gan-
glia, fibers) innervating smooth muscle layers suggests
that the peptide plays an important role in the function
of the gastrointestinal tract. In agreement with this
notion, intravenous injection of PACAP to anesthetized
rat stimulates secretion of saliva from the submandibu-
lar and parotid glands (Mirfendereski et al., 1997). In
the ferret submandibular gland, PACAP and VIP exert a
vasodilatory effect that contributes to trigger the secre-
tory activity of the salivary glands (Tobin et al., 1995). In
the hamster submandibular ganglion neurons, PACAP
inhibits L-, N-, and P/Q-type Ca2� channels via the
Gs-protein � subunit coupled to PAC1-R (Hayashi et al.,
2002; Kamaishi et al., 2004) and induces potentiation of
acetylcholine-evoked nicotinic currents through a PTX-
sensitive G protein (Liu et al., 2000).

In the rat stomach, PACAP inhibits histamine- and
pentagastrin-evoked gastric acid secretion but has no
effect on carbachol-induced secretion (Mungan et al.,
1992b, 1995; Li et al., 2000c). In contrast, on isolated
rabbit parietal cells, PACAP potentiates the response to
histamine and to carbachol (Healey et al., 1998). In the
gastric mucosa, PACAP stimulates histamine synthesis,
storage and release from enterochromaffin-like (ECL)
cells (Lindström et al., 1997; Håkanson et al., 1998; Zeng
et al., 1998, 1999a; Prinz et al., 2003) through activation
of L-type calcium channels (Zeng et al., 1999b; Lind-
ström et al., 2001) and triggers histidine decarboxylase
activity (Bernsand et al., 2007). Consistent with these
observations, the presence of PAC1-R has been detected
on gastric ECL cells (Zeng et al., 1999a). Because hista-
mine is a potent stimulator of chloride secretion (He-
lander and Keeling, 1993), these data suggest that the
effect of PACAP on gastric acid production can be ac-
counted for, at least in part, by an indirect stimulation of
ECL cells (Sandvik et al., 2001). In support of this hy-
pothesis, PACAP elevates [Ca2�]i in ECL cells and ad-
jacent parietal cells in rabbit gastric glands, whereas
histamine receptor antagonists abolish the Ca2� re-
sponse in adjacent parietal cells (Athmann et al., 2000).
PACAP also stimulates proliferation of gastric ECL cells
through activation of the PKA, protein tyrosine kinase,
and MAPK pathways (Läuffer et al., 1999; Oh et al.,
2005). Intracerebroventricular injection of PACAP stim-
ulates gastric acid secretion (Ozawa et al., 1997), sug-
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gesting that PACAP may act centrally to regulate gas-
tric acid release. The central effect of PACAP may
involve peptide tyrosine tyrosine (PYY) as an indirect
mediator (Guo et al., 1987), because intravenous injec-
tion of PACAP has been shown to increase plasma PYY
concentrations (Zhang et al., 1993). In the antrum of
mammals, PACAP regulates locally the secretion of a
number of peptides, including atrial natriuretic peptide
(Gower et al., 2003), gastrin, and somatostatin (Tornøe
et al., 2001). In the guinea pig stomach, PACAP in-
creases exocytosis of zymogen granules from isolated
chief cells that release pepsinogen (Felley et al., 1992).
Intravenous injection of PACAP also enhances bicarbon-
ate secretion in the duodenum (Takeuchi et al., 1997;
Konturek et al., 2004). In the distal colon, PACAP acts
through cholinergic and noncholinergic neurons to evoke
chloride secretions (Kuwahara et al., 1993). In human
colonic T84 cells, PACAP also regulates chloride secre-
tion in a Ca2�-dependent manner (Leung et al., 2001).
One conspicuous feature is the superior potency of
PACAP, compared with other gut neuropeptides, in
stimulating gastrointestinal exocrine secretions (Läuff
et al., 1999). In a model of experimental colitis induced
by dextran sulfate sodium, PACAP inhibits the produc-
tion of pro-inflammatory cytokines in the proximal and
distal colon (Azuma et al., 2008). Using the same ap-
proach, it has been observed that PACAP(�/�) mice
exhibit higher colonic inflammation on pathological ex-
amination than wild-type animals (Nemetz et al., 2008).

Besides its effects on the secretory activity of exocrine
and endocrine cells, PACAP induces a concentration-
dependent relaxation of gastric smooth muscles (Katsou-
lis et al., 1996; Robberecht et al., 1998; Mukai et al.,
2006; Toyoshima et al., 2006), causing a decrease of
gastric motility and a delay in stomach emptying
(Ozawa et al., 1999). PACAP also exerts a relaxant effect
on intestinal smooth muscles from rat (Mungan et al.,
1992a; Schwörer et al., 1992; Katsoulis et al., 1993b;
Grider et al., 1994; Ekblad and Sundler, 1997; Olsson
and Holmgren, 2000), guinea pig (Mungan et al., 1992a;
Schwörer et al., 1992; Katsoulis et al., 1993b; Grider et
al., 1994; Ekblad and Sundler, 1997; Olsson and
Holmgren, 2000) and Atlantic cod, Gadus morhua (Mun-
gan et al., 1992a; Schwörer et al., 1992; Katsoulis et al.,
1993b; Grider et al., 1994; Ekblad and Sundler, 1997;
Olsson and Holmgren, 2000), thus reducing the motility
of the bowel (Läuff et al., 1999). The mechanism by
which PACAP induces muscle relaxation along the gas-
trointestinal tract has been extensively studied. In the
mouse fundus, PACAP release, regulated by M2 musca-
rinic receptors (Takeuchi et al., 2006), induces a sus-
tained relaxation that is suppressed by iberiotoxin, an
inhibitor of big conductance calcium-activated K� chan-
nels (Hagi et al., 2008). In circular smooth muscle cells of
the pig jejunum, PACAP(6–38) attenuates inhibitory
junction potentials evoked by electrical field, suggesting

that inhibitory neurotransmission is mediated at least
in part by PACAP (Matsuda et al., 2004). In longitudinal
muscle cells of the mouse ileum, PACAP inhibits spon-
taneous contractile activity through activation of PLC
and Ca2� release from intracellular stores, causing
opening of apamin-sensitive Ca2�-dependent K� chan-
nels (Zizzo et al., 2005). In the same tissue, PACAP also
enhances nitric oxide (NO) production, which in turn
may stimulate the release of PACAP from inhibitory
neurons (Zizzo et al., 2004).

In the colon, the effect of PACAP on longitudinal mus-
cle relaxation is mediated through PAC1-R (Mukai et
al., 2002). On murine colonic smooth muscle cells,
PACAP increases the frequency of Ca2� transients, as
well as the frequency and amplitude of spontaneous
outward currents through activation of the AC pathway
(Hagen et al., 2006). In colon-inferior mesenteric gan-
glion neurons, PACAP causes prolonged depolarization
and intense generation of fast excitatory postsynaptic
potentials and action potentials through PAC1-R (Er-
milov et al., 2004). It is noteworthy that, in the rat distal
colon, exogenous PACAP induces strong relaxation of
the longitudinal muscle in 2-week-old rats but has no
effect on tissues from 8-week-old rats, indicating that
the effect of PACAP fades during postnatal maturation
(Takeuchi et al., 2004).

At odds with the effects in rat colon is that in the
guinea pig small intestine, PACAP stimulates normal
peristalsis and counteracts drug-induced peristaltic ar-
rest (Heinemann and Holzer, 1999). The contractile ef-
fect of PACAP on the guinea pig ileum is mediated
through presynaptic stimulation of acetylcholine and
substance P release (Katsoulis et al., 1993a). In the
opossum internal anal sphincter, PACAP exerts a bipha-
sic effect (i.e., an initial contraction followed by relax-
ation) (Rattan and Chakder, 1997; Chakder and Rattan,
1998). The contractile but not the relaxant effect of
PACAP on the anal sphincter is abrogated by a sub-
stance P antagonist, confirming that the PACAP-evoked
contraction is mediated through presynaptic activation
of substance P afferents (Rattan and Chakder, 1997). In
fish and amphibians, PACAP exerts an inhibitory con-
trol of peristalsis (Olsson and Holmgren, 2001). In the
stargazer, PACAP inhibits rectum contractions stimu-
lated by acetylcholine or potassium chloride (Matsudaa
et al., 2000).

To summarize, in the gastrointestinal tract, PACAP
stimulates the secretion of saliva, gastric acid and
bicarbonate as well the release of other regulatory
peptides including gastrin, somatostatin, atrial natri-
uretic factor and PYY. In addition, PACAP exerts a
number of effects on the gastrointestinal tract motility
through its action (mainly myorelaxation) on smooth
muscles from the stomach, intestine, colon, rectum,
and anal sphincter.
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G. Effects of Pituitary Adenylate Cyclase-Activating
Polypeptide on the Liver

It has long been known that VIP is a potent stimulator
of AC activity in liver cells (Waelbroeck et al., 1981).
Likewise, in cultured hepatocytes, PACAP causes a
dose-dependent accumulation of cAMP but does not af-
fect inositol phosphate turnover (el Fahime et al., 1996).
The fact that VIP exerts a mitogenic action on rat hepa-
tocytes (Kar et al., 1996) strongly suggests that PACAP
could also be involved in the control of liver cell prolif-
eration. Injection of PACAP to anesthetized dogs in-
duces a 2-fold increase of plasma glucose concentration
(Sekiguchi et al., 1994). Actually, PACAP is more potent
than VIP in stimulating glucose output from the per-
fused rat liver (Yokota et al., 1995). The hyperglycemic
action of PACAP observed in vivo can be ascribed to both
a direct action on hepatocytes and an indirect effect via
glucagon and/or adrenaline release (Sekiguchi et al.,
1994). Finally, PACAP acting on VPAC2-R exerts a li-
polytic effect on rat adipocytes (Akesson et al., 2003,
2005) and PACAP knock-out animals exhibit microve-
sicular fat accumulation, indicating that PACAP acts as
an important hormonal regulator of lipid and carbohy-
drate metabolism (Gray et al., 2001; Tomimoto et al.,
2008). These observations support the view that PACAP
agonists could be of therapeutic value for the treatment
of obesity.

H. Effects of Pituitary Adenylate Cyclase-Activating
Polypeptide on the Pancreas

In the pancreas, PACAP-immunoreactive fibers inner-
vate both the exocrine acini and the islets of Langer-
hans, as well as the small arteries running within the
connective tissue (Table 2) (Köves et al., 1993; Tornøe et
al., 1997). Electrical stimulation of the vagus nerve
causes the release of PACAP from the isolated perfused
pig pancreas, suggesting that the peptide may control
exocrine and/or endocrine pancreatic secretions (Tornøe
et al., 1997). Nevertheless, overexpression of PACAP
may be deleterious as it aggravates cerulean-induced
pancreatitis in mice (Hamagami et al., 2009).

Intravenous injection of PACAP triggers amylase
(Mungan et al., 1991; Alonso et al., 1994), pancreatic
fluid, bicarbonate, and protein secretions (Naruse et al.,
1992; Alonso et al., 1994; Zabielski et al., 1994; Ro-
dríguez-López et al., 1995; Onaga et al., 1996; Wheeler
et al., 1997; Lee et al., 1998; Glad et al., 2003). PACAP
also induces vasodilation and increases pancreatic blood
flow, notably in the exocrine part of the gland (Carlsson
et al., 1996; Ito et al., 1998). The stimulatory effect of
PACAP on juice flow is inhibited by the antagonist
PACAP(6–38) (Tornøe et al., 1997). Experiments con-
ducted on isolated rat pancreatic acini have shown that
PACAP exerts a direct increase on amylase and lipase
secretions (Kashimura et al., 1991; Raufman et al., 1991;
Schmidt et al., 1993). Coadministration of PACAP with

cholecystokinin, carbachol or bombesin to dispersed
guinea pig acinar cells causes additive stimulation of
amylase secretion (Kimball and Mulholland, 1996). The
effect of PACAP is probably mediated via the AC path-
way and does not involve PLC activation or calcium
mobilization (Kashimura et al., 1991; Kitagawa et al.,
1995; Kimball and Mulholland, 1996). Besides its direct
action on acinar cells, PACAP may also exert an indirect
effect on pancreatic exocrine secretions through modu-
lation of afferent nerve activity. In particular, PACAP
has been shown to stimulate pancreatic enzyme secre-
tion in sheep via activation of vagal cholinergic neurons
(Onaga et al., 1997). PACAP also enhances electrically
evoked stimulation of noradrenaline release in the ca-
nine pancreas (Yamaguchi and Fukushima, 1998), sug-
gesting that the peptide may control juice flow through
presynaptic modulation of the parasympathetic vagus
nerve. Altogether, these data suggest that PACAP has to
be added to the still growing list of secretagogues of the
exocrine pancreas.

In the endocrine pancreas, PACAP seems to be much
more potent than VIP or other regulatory peptides in
stimulating pancreatic hormone secretion (Winzell and
Ahrén, 2007; Ahrén, 2008). In vivo administration of
PACAP causes a significant increase in plasma insulin
level in mice (Fridolf et al., 1992; Filipsson et al., 1998a;
Persson-Sjögren et al., 2006), calf (Edwards et al., 1997),
dog (Kawai et al., 1992), and human (Filipsson et al.,
1997). In support of a role of PACAP on islet hormone
secretion (Yada et al., 1997a), PACAP knock-out mice or
animals treated with the antagonist PACAP(6–38) ex-
hibit reduced insulin secretion after intraperitoneal glu-
cose challenge (Shintani et al., 2003; Green et al., 2006;
Tomimoto et al., 2008). PACAP acts at very low concen-
trations on cultured islets cells (Yada et al., 1994,
1997b,c; Filipsson et al., 1998b; Davalli et al., 1999;
Filipsson et al., 1999), and its stimulatory effect on in-
sulin secretion is mediated through activation of
PAC1-R and VPAC2-R coupled to the AC pathway (Ja-
men et al., 2000a, 2002b; Asnicar et al., 2002; Persson
and Ahrén, 2002). Furthermore, pancreatic �-cells ex-
press cell-surface ectopeptidases capable of degrading
PACAP (Hupe-Sodmann et al., 1997), indicating that the
action of PACAP on insulin secretion is finely regulated.
The amplitude and kinetics of the PACAP-evoked stim-
ulation of insulin release depends on glucose concentra-
tion in the incubation medium (Yokota et al., 1993; Ber-
trand et al., 1996; Edwards et al., 1997). PACAP induces
a biphasic effect on insulin secretion [i.e., a rapid and
transient stimulation (acute phase) followed by a re-
bound of the secretory response (plateau phase)]. The
plateau phase could be ascribed to the ability of PACAP
to regulate insulin gene expression (Borboni et al.,
1999). The phosphatidylinositol 3-kinase inhibitor wort-
mannin inhibits the plateau phase but not the acute
phase of the PACAP-evoked insulin release (Straub and
Sharp, 1996). Exposure of pancreatic �-cells to PACAP
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causes calcium influx through L-type calcium channels
(Yada et al., 1997c) and the stimulatory effect of PACAP
on insulin secretion is abolished by nitrendipine (Kom-
atsu et al., 1996), indicating that activation of voltage-
sensitive L-type calcium channels is involved in the in-
sulinotropic effect of PACAP. Strangely enough, the
combination of glucose, PACAP, and carbachol stimu-
lates insulin release but is unable to elevate intracellu-
lar calcium (Komatsu et al., 1996). Incubation of isolated
rat islets with specific PACAP antisera inhibits the abil-
ity of glucose to stimulate insulin release (Yada et al.,
1997b; Filipsson et al., 1999), suggesting that endoge-
nous PACAP acts as a physiological regulator of pancre-
atic �-cell activity. PACAP is also a potent stimulator of
glucagon secretion. Intravenous injection of PACAP in-
creases plasma glucagon concentration in mice (Fridolf
et al., 1992) and human (Filipsson et al., 1997). Like-
wise, in the perfused rat pancreas, PACAP enhances
glucagon secretion (Yokota et al., 1993). The stimulatory
effect of PACAP on insulin and glucagon release is com-
pletely abolished by somatostatin (Yokota et al., 1993).
Besides its effect on hormone regulation, PACAP in-
duces an antiapoptotic effect on rat insulinoma �-cells
(Onoue et al., 2008), suggesting that impaired PACAP
signaling during aging might contribute to the occur-
rence of type 2 diabetes.

To summarize, both endogenous and exogenous
PACAP seem to be potent activators of pancreatic endo-
crine secretions. On the endocrine gland, PACAP stim-
ulates insulin and glucagon secretion, which suggests
that it could play an important role in prandial insulin
secretion and contribute to the glucagon response to
hypoglycemia. This ability of PACAP to stimulate insu-
lin production may lead to the development of novel
therapies for the treatment of type 1 diabetes (Kamiya
et al., 2000; Herrera et al., 2006; Sakuma et al., 2009).
Furthermore, the antiapoptotic effect of PACAP on in-
sulinoma �-cells suggests that it could be of therapeutic
interest for the treatment of type 2 diabetes.

I. Effects of Pituitary Adenylate Cyclase-Activating
Polypeptide on the Respiratory System

The occurrence of PACAP and PACAP receptors has
been reported at different levels of the airways (Tables 2
and 8). In rodents, PACAP causes relaxation of tracheal
smooth muscles (Araki and Takagi, 1992; Conroy et al.,
1995; Foda et al., 1995; Hiramatsu et al., 1995; Yoshi-
hara et al., 1997; Berisha et al., 2002; Lindén et al.,
2003), promotes bronchodilation (Lindén et al., 1995,
1997, 1999) and increases nasal airway resistance (Kin-
hult et al., 2003). The relaxant effect of PACAP on the
trachea is mediated through activation of the cAMP/
PKA-dependent (Araki and Takagi, 1992; Kanemura et
al., 1993; Foda et al., 1995), NO/cGMP–dependent (Sao-
tome et al., 1998), and carbon monoxide-dependent
transduction pathways (Kinhult et al., 2001a). PACAP
also plays a crucial role in the maintenance of normal

pulmonary vascular tone during early postnatal life.
Thus, deficiency of PACAP signaling leads to pulmonary
hypertension (Otto et al., 2004), breathing defects (Wil-
son and Cumming, 2008), and sudden neonatal death
(Cummings et al., 2004). PACAP may control breathing
by acting either directly on carotid bodies (Xu et al.,
2007, 2008) or indirectly via the respiratory centers in
the CNS (Wilson and Cumming, 2008). PACAP is also a
potent stimulator of airway mucus (Wagner et al., 1998;
Liu et al., 1999) and chloride secretions (Dérand et al.,
2004), suggesting a role in airway defense. PACAP ex-
erts an antiapoptotic effect on the respiratory system
and attenuates the cytotoxicity of cigarette smoke ex-
tracts on alveolar cells (Onoue et al., 2004). Owing to the
broncho-relaxant and protective properties of PACAP
and VIP, synthetic analogs have been developed for po-
tential application in the treatment of asthma (Bolin et
al., 1995; Meyer et al., 1996; Sergejeva et al., 2004;
Yoshihara et al., 2004; Szema et al., 2006), and a VIP
aerosol formulation, aviptadil, is currently under evalu-
ation for the treatment of pulmonary hypertension
(Leuchte et al., 2008). Thus, a therapy using the venti-
latory effects of VIP could offer potential benefits for the
treatment of obstructive and inflammatory diseases,
and long-acting VIP-based compounds may represent a
novel target for drug development.

J. Effects of Pituitary Adenylate Cyclase-Activating
Polypeptide on the Cardiovascular System

The walls of blood vessels are richly innervated by
PACAP-containing fibers (Table 2) (Köves et al., 1990;
Cardell et al., 1991; Baeres et al., 2004) and a high
density of PACAP binding sites is present in arteries
(Table 6) (Amenta et al., 1991; Nandha et al., 1991;
Huang et al., 1993). Although PACAP is able to exert an
indirect hypertensive action mediated through the re-
lease of catecholamines (Ishizuka et al., 1992; Minkes et
al., 1992a), this peptide, in very much the same way as
VIP, is mainly considered as a highly potent vasorelax-
ant factor (Hirata et al., 1985; Ross-Ascuitto et al., 1993;
Tong et al., 1993; Ascuitto et al., 1996). This vasodilatory
activity, which can be ascribed at least in part to its
activity on arterial smooth muscle cells (Huang et al.,
1993; Naruse et al., 1993; Steenstrup et al., 1996; Bruch
et al., 1997), is well documented in various organs, in-
cluding the brain (Tong et al., 1993; Anzai et al., 1995),
the eye (Nilsson, 1994; Elsås and White, 1997; Dorner et
al., 1998), the pulmonary vascular bed (Minkes et al.,
1992b; Cheng et al., 1993; Foda et al., 1995), the mes-
entery (Wilson and Warren, 1993), the pancreas (Ber-
trand et al., 1996; Ito et al., 1998), the testis (Lissbrant
et al., 1999), the ovary (Steenstrup et al., 1994; Yao et
al., 1996), the vagina (Steenstrup et al., 1994; Giraldi et
al., 2002; Aughton et al., 2008), the kidney (Gardiner et
al., 1994), the gastrointestinal tract (Portbury et al.,
1995; Badawy and Reinecke, 2003), and the skin (Wal-
lengren, 1997).
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The intracellular mechanism of action of PACAP on
blood vessel contractility is not fully understood. PACAP
is known to increase cAMP formation in the isolated
rabbit ovarian artery (Yao et al., 1996), the rat tail vein
(Absood et al., 1992), and cerebral microvessels (Koba-
yashi et al., 1994; Wilderman and Armstead, 1997). Be-
cause cAMP has an inhibitory effect on smooth muscle
cell contraction, the stimulatory effect of PACAP on
cAMP production is likely to account for its vasorelax-
ation activity (Steer, 1976; Korenman and Krall, 1977;
Farah, 1983). The action of PACAP on arterial smooth
muscle cell relaxation requires the activation of ATP-
and calcium-dependent potassium channels (Bruch et
al., 1997). PACAP can also increase the amplitude of
L-type Ca2� channel currents in vascular smooth mus-
cle cells through the activation of both PKA, PKC, and
PLC (Chik et al., 1996; Markhotina et al., 2007) with a
greater efficiency in spontaneously hypertensive rats
than in normotensive animals (Li et al., 2001). The in-
volvement of the endothelium in the vasodilatory activ-
ity of PACAP is still a matter of debate: two reports
indicate that the vasorelaxant effect of PACAP on the
aorta and coronary arteries is endothelium-independent
(Warren et al., 1991; Kästner et al., 1995), whereas
another study reveals that removal of the vascular en-
dothelium abolishes the dilatory response induced by
PACAP in pulmonary arteries (Cardell et al., 1997).
Finally, some of the effects of PACAP on the vascular
bed appears to be mediated through the release of vas-
culotropic factors. For example, in cerebral arteries,
PACAP can activate a cyclooxygenase-independent
mechanism (Lenti et al., 2007) but also a cyclooxygen-
ase-dependent pathway leading to the release of the
prostaglandin PGF2� (Anzai et al., 1995; Lenti et al.,
2007). PACAP has also been found to stimulate the
production of vascular endothelial growth factor, which
plays an important role in angiogenesis and vascular
permeability (Gloddek et al., 1999). The vasodilatory
effect of PACAP is associated with a dose-dependent
increase in blood flow in various organs (Nandha et al.,
1991; Ishizuka et al., 1992; Minkes et al., 1992a; Warren
et al., 1992a,b; Naruse et al., 1993; Santiago and Kad-
owitz, 1993; Mirfendereski et al., 1997; Whalen et al.,
1999a,b,c), including brain (Uddman et al., 1993;
Jansen-Olesen et al., 1994; Seki et al., 1995a; Reglodi et
al., 2002; Ohtaki et al., 2004), and a decrease in mean
arterial blood pressure (Ishizuka et al., 1992; Carlsson
et al., 1996; Mirfendereski et al., 1997; Ohtaki et al.,
2004). Altogether, these observations highlight the ma-
jor vasorelaxant effect of PACAP and indicate that this
neuropeptide may have a potential therapeutic value for
the treatment of hypertension.

In the heart, PACAP produces positive inotropic, chro-
notropic, and dromotropic effects, making it a car-
diotonic candidate for treatment of heart failure. For
instance, intravenous injection of PACAP in cat, sheep,
and human provokes an increase in heart rate and en-

hances the contractile ventricular force (Minkes et al.,
1992a; Sawangjaroen et al., 1992; Sawangjaroen and
Curlewis, 1994; Birk et al., 2007). PACAP also caused
bradycardia in isolated perfused guinea pig heart
through both PAC1-R and VPAC-R (Chang et al., 2005;
Hoover et al., 2009). In the anesthetized dog and on the
isolated canine heart, PACAP evokes a transient posi-
tive followed by negative chronotropic and inotropic re-
sponses (Hirose et al., 1997b; Hirose et al., 1998). The
negative response can be ascribed to stimulation of car-
diac parasympathetic neurons and acetylcholine release
from cholinergic parasympathetic postganglionic nerves
(Hirose et al., 1997c). In vitro studies on the isolated
guinea pig heart have confirmed that the negative chro-
notropic effect of PACAP can be accounted for by an
increase in acetylcholine release from parasympathetic
neurons (Seebeck et al., 1996). Moreover, the response of
the guinea pig heart was blocked by atropine, indicating
that the negative chronotropic effect is mediated by cho-
linergic neurons (Chang et al., 2005). On the contrary,
the positive effects of PACAP are attributable to direct
stimulation of cardiac myocytes (Suzuki et al., 1993;
Runcie et al., 1995; Hirose et al., 1997a; Chang et al.,
2005). In isolated rat and guinea pig heart preparations,
which lack sympathetic tone, PACAP causes tachycar-
dia independently of adrenergic mechanisms (Chang et
al., 2005). However, in the anesthetized rat, the PACAP-
induced tachycardia is abolished by the �-adrenorecep-
tor antagonist propranolol but is not affected by the
ganglion blocker chlorisondamine, indicating that
PACAP can stimulate norepinephrine release from car-
diac sympathetic nerve terminals (Whalen et al., 1999a).

In guinea pig, PACAP modulates the excitability of
intracardiac neurons by enhancing a hyperpolarization-
activated nonselective cationic conductance (Merriam et
al., 2004). This effect is mediated by PAC1-R and cAMP
production (Parsons et al., 2000; Tompkins and Parsons,
2008) and requires Ca2� influx (Tompkins et al., 2006).
In contrast, the increased excitability of rat neonatal
cardiac neurons induced by PACAP requires coactiva-
tion of PAC1-R and VPAC-R and release of Ca2� from
intracellular stores (DeHaven and Cuevas, 2004).
PACAP is localized to preganglionic parasympathetic
nerves in rat and guinea pig hearts (Calupca et al., 2000;
Richardson et al., 2003), and PACAP released at this site
acts at postsynaptic PAC1-R to increase excitability of
cardiac cholinergic neurons (Tompkins et al., 2007).

PACAP induces spontaneous atrial fibrillation in au-
tonomically decentralized, anesthetized dogs and also
causes arrhythmias in isolated guinea pig hearts (Hirose
et al., 1997a; Chang et al., 2005). Muscarinic blockade
with atropine prevents arrhythmias in both models, sug-
gesting that this response is mediated by cholinergic
neurons. In isolated dog atrium preparations, PACAP
reduces action potential duration (Hirose and Chiba,
2003) and causes ectopic activity (Hirose and Laurita,
2007).
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Taken together, these data indicate that PACAP ex-
erts major stimulatory effects on the cardiovascular sys-
tem. PACAP also exhibits protective properties against
oxidative stress-induced apoptosis in cardiomyocytes
(Gasz et al., 2006; Rácz et al., 2008; Roth et al., 2009)
and endothelial cells (Rácz et al., 2007), pointing to the
therapeutic interest of PACAP for the treatment of car-
diovascular diseases.

K. Effects of Pituitary Adenylate Cyclase-Activating
Polypeptide on Immune Cells

VIP and PACAP exert a broad spectrum of actions on
cells of the systems of innate and acquired immunity. In
cultured mast cells, PACAP stimulates histamine secre-
tion (Schmidt-Choudhury et al., 1999a,b) and serotonin
release (Seebeck et al., 1998). In mitogen-stimulated
murine splenocytes, PACAP causes a dose-dependent
inhibition of concanavalin A-induced cell proliferation
(Tatsuno et al., 1991a). In murine spleen cells and thy-
mocytes, PACAP inhibits IL-10 production via both
cAMP-dependent and -independent pathways (Martinez
et al., 1996; Wang et al., 1999). In CD4�CD8� thymo-
cytes, PACAP prevents glucocorticoid-induced apoptosis
(Delgado et al., 1996b) through inhibition of Fas ligand
expression (Delgado and Ganea, 2000a), suggesting in-
volvement in intrathymic T-cell maturation.

In different animal models of chronic inflammatory
diseases, treatment with PACAP attenuates the symp-
toms and modifies the cytokine profiles. For instance, in
a murine model of experimental autoimmune encepha-
lomyelitis, PACAP-deficient mice exhibit more severe
clinical and pathological manifestations compared with
wild-type animals. The increased sensitivity of PACAP-
deficient mice is associated with enhanced production of
proinflammatory cytokines, chemokines, and chemokine
receptors, and reduced production of anti-inflammatory
cytokines (Tan et al., 2009).

In unstimulated macrophages, PACAP and its agonist
maxadilan inhibit the release of tumor necrosis factor-�
and increase IL-6 production through activation of the
PKA and PKC pathways (Delgado et al., 1998, 1999c,g;
Martínez-Fuentes et al., 1998a; Soares et al., 1998). In
contrast, PACAP inhibits the release of IL-6, IL-12, and
tumor necrosis factor-� from lipopolysaccharide-stimu-
lated macrophages (Martínez et al., 1998a,b; Delgado et
al., 1999a,c,f). PACAP also inhibits NO production in a
concentration- and time-dependent manner (Delgado et
al., 1999e). The anti-inflammatory effects of PACAP can
be ascribed to inhibition of nuclear factor-�B, interferon
regulatory factor-1, and Ets, and blockage of the
MEKK1/MEK4/JNK signaling pathways (Delgado et al.,
1998, 1999e; Delgado and Ganea, 2000b, 2001b). Besides
its inhibitory effect on the production of proinflamma-
tory cytokines, PACAP also stimulates the synthesis and
release of anti-inflammatory cytokines such as IL-10
(Bozza et al., 1998; Delgado et al., 1999d).

PACAP modulates the profile of chemokines produced
by activated macrophages and the pattern of adhesion
molecules expressed by granulocytes, thereby affecting
the recruitment of polymorphonuclear cells, macro-
phages, and lymphocytes (Ganea and Delgado, 2002; El
Zein et al., 2008). PACAP decreases chemotaxis of thy-
mocytes and splenic lymphocytes through activation of
the PKA pathway (Delgado et al., 1995; Garrido et al.,
1996). In a model of acute peritonitis, PACAP inhibits
the expression of MIP-2, IL-8, MIP-1�, MIP-1�, mono-
cyte chemoattractant protein-1, and regulated on acti-
vation normal T-cell-expressed and secreted (RANTES),
resulting in a decreased infiltration of polymorphonu-
clear cells, macrophages, and lymphocytes in the perito-
neal cavity (Delgado and Ganea, 2001a). Both PACAP
and VIP inhibit neutrophil chemotaxis in vitro and in
vivo (Kinhult et al., 2001b, 2002; Martínez et al., 2005).
In a model of septic shock, PACAP reduces leukocyte
infiltration in target organs and induces a decrease of
the mRNA encoding the adhesion molecules intercellu-
lar adhesion molecule-1 and vascular cell adhesion mol-
ecule-1 (Martínez et al., 2002, 2005, 2006). In spleen
cells, PACAP inhibits the expression of IP-10 (CXCL10)
but stimulates the expression MDC (CCL22), two che-
mokines attracting Th1 and Th2 cells, respectively, lead-
ing thereby to the preferential recruitment of the anti-
inflammatory Th2 cell population (Delgado et al., 2002b;
Jiang et al., 2002).

CD4� T helper cells differentiate upon antigen recog-
nition into four main cell subsets named Th1, Th2, Th17,
and regulatory T cell. The differentiation of CD4� T cells
into these different subsets controls the immune re-
sponse fate and thereby the pathogen clearance (Zhu
and Paul, 2008). PACAP mediates, in vivo and in vitro,
a skewing of Th responses toward an anti-inflammatory
Th2 cell-mediated immune response (Delgado et al.,
1999b). In vitro, PACAP-treated macrophages polarize
antigen-primed T cells toward a Th2 phenotype charac-
terized by IL-4 and IL-5 production while inhibiting
Th1-type cytokine production (Delgado et al., 1999b).
This effect of PACAP on Th cell differentiation relies not
only on the alteration of cytokine production derived
from macrophages and dendritic cells but also on the
up-regulation of B7.2 but not B7.1 gene expression (Del-
gado et al., 1999b,h). In vivo administration of VIP or
PACAP decreases the proinflammatory Th1 response
and favors a Th2 response in antigen-immunized mice
(Delgado et al., 1999b). VPAC-1 is expressed constitu-
tively in T cells, whereas VPAC-2 is induced by T-cell
receptor stimulation. Two distinct studies using opposite
strategies (i.e., VPAC2-R-overexpressing transgenic
mice and VPAC2-R-deficient mice), show a skewing of
Th cells toward Th2 and Th1 phenotypes, respectively,
illustrating the involvement of PACAP in the control of
CD4� T cell responses (Goetzl et al., 2001; Voice et al.,
2001). In a model of experimental autoimmune enceph-
alomyelitis, PACAP-deficient mice exhibit increased
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proliferation of Th1/Th17 cells associated with elevated
production of pro-inflammatory cytokines and a de-
crease of TGF-� production and regulatory T cell prolif-
eration after antigenic challenge (Tan et al., 2009).
These observations suggest that PACAP may regulate in
vivo the proliferation of these subsets of CD4� T cells.

Through its action on cytokines, chemokines, cell ad-
hesion molecules, and costimulatory molecules produced
or expressed by activated antigen-presenting cells, and
through its direct and/or indirect effects on Th cell re-
sponses, PACAP appears as an important endogenous
immunomodulatory molecule that exerts protective
anti-inflammatory actions in many different models of
autoimmune diseases (Abad et al., 2001; Gomariz et al.,
2006). Based on these observations, VIP and PACAP are
currently raising interest as candidates for development
into new therapeutically valuable anti inflammatory
agents (Delgado et al., 1999b, 2000; Abad et al., 2006;
Gonzalez-Rey et al., 2007; Tan et al., 2009).

L. Effects of Pituitary Adenylate Cyclase-Activating
Polypeptide on Bones

PACAP has been detected in cartilage canals from
newborn pigs (Strange-Vognsen et al., 1997), and func-
tional receptors are expressed in human and mouse
osteoblasts as well as in rat and mouse osteoclasts (To-
gari et al., 1997; Lundberg et al., 2000; Ransjö et al.,
2000). Consistent with these observations, PACAP in-
creases cAMP formation in mouse calvarial bones
(Lerner et al., 1994) and synergizes with the proinflam-
matory bone-resorbing cytokine IL-1� in osteoblasts to
promote the production of IL-6, another well known
stimulator of bone resorption (Persson and Lerner,
2005). This effect of PACAP is mediated through
VPAC2-R and involves the cAMP/PKA-dependent path-
way (Persson et al., 2005; Nagata et al., 2009). PACAP
also exerts an inhibitory effect on thyroid hormone-stim-
ulated osteocalcin synthesis via blockade of the p38
MAPK in osteoblast-like MC3T3-E1 cells (Kanno et al.,
2005). Besides its effect on osteoblasts, PACAP inhibits
osteoclastogenesis and thus reduces bone resorption
(Winding et al., 1997; Mukohyama et al., 2000). This
effect can be ascribed, at least in part, to a decreased
expression of the receptor activator of nuclear factor-�B
ligand and its receptor, which play a role in osteoclast
formation and activation, as well as an increased expres-
sion of the receptor activator of nuclear factor-�B ligand
decoy receptor osteoprotegerin (Mukohyama et al.,
2000).

M. Effects of Pituitary Adenylate Cyclase-Activating
Polypeptide on Tumor Cells

As mentioned in sections II.G and III.G, PACAP and
its receptors are actively expressed in a number of tumor
cell lines. In agreement with this observation, PACAP
has been found to exert either stimulatory or inhibitory
effects on tumor cells (Lelièvre et al., 2003). In the small-

cell lung cancer cell line NCI-H345, PACAP stimulates
cell proliferation through activation of type II binding
sites (Moody et al., 1993, 1997). In rat pancreatic carci-
noma AR4–2J and human pancreatic carcinoid BON
cells, PACAP induces gene expression (Schäfer et al.,
1996; Hofsli et al., 2005) and increases cell proliferation
(Buscail et al., 1992; Douziech et al., 1998; Hofsli et al.,
2005). The effect of PACAP on AR4–2J cells is mediated
through activation of tyrosine kinase and phospholipase
D (Morisset et al., 1995). PACAP also promotes c-fos
expression in lung cancer cells (Draoui et al., 1996).
PACAP(6–38) reduces tumor growth in nude mice trans-
planted with lung tumor cell (Zia et al., 1995) and breast
cancer cell (Leyton et al., 1999) xenografts, which indi-
cates that PACAP exerts a tonic stimulatory effect on
cell proliferation. Likewise, PACAP transiently in-
creases c-fos gene expression in prostate cancer cells in
vitro, and PACAP(6–38) markedly inhibits tumor
growth in mice bearing PC-3 xenografts (Leyton et al.,
1998). In contrast, PACAP slackens proliferation of co-
lonic adenocarcinoma cells (Vertongen et al., 1996; Le-
lièvre et al., 1998a). Although PACAP was initially re-
ported to inhibit T98G glioblastoma cell division
(Vertongen et al., 1996), it can also stimulate prolifera-
tion of U87, U118, U373, and C6 cell lines (Sharma et
al., 2001; Dufes et al., 2003). On neuroblastoma cell
lines, PACAP exerts a biphasic, concentration-depen-
dent effect, with stimulation of proliferation occurring at
subnanomolar doses and differentiation at higher con-
centrations (Deutsch et al., 1993; Hoshino et al., 1993;
Lilling et al., 1994; Lelièvre et al., 1996, 1998b; Mon-
aghan et al., 2008b). PACAP also protects neuroblas-
toma cells from apoptosis (Deguil et al., 2007). The effect
of PACAP on neuroblastoma differentiation involves
a cAMP/ERK-dependent, PKA-independent pathway
(Monaghan et al., 2008a). In these cells, PACAP pro-
motes alpha secretase activity, which might contribute
to its neuroprotective properties (Kojro et al., 2006). In
some tumor cells, the antiproliferative effect of PACAP
would come from its ability to antagonize hedgehog over-
expression (Waschek et al., 2000, 2006). On LNCaP
prostate tumor cells, short-term exposure to PACAP
stimulates proliferation, whereas long-term treatment
leads to cell differentiation toward a neuroendocrine
phenotype (Juarranz et al., 2001; Farini et al., 2003). In
the PC-3 cell line, PACAP acts as an autocrine factor to
protect cancer cells from apoptosis (Gutiérrez-Cañas et
al., 2003). PACAP also prevents renal proximal tubule
cell injury and inhibits myeloma cell growth both in
vitro and in vivo (Arimura et al., 2006; Li et al., 2007,
2008).

In PC12 cells, PACAP promotes cell survival, inhibits
proliferation, and induces neurite outgrowth (Deutsch
and Sun, 1992; Hernandez et al., 1995; Lazarovici et al.,
1998; Vaudry et al., 2002a). The effect of PACAP on
PC12 cell neuritogenesis involves translocation of
PAC1-R into caveolae, where both AC and the regulat-
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ing G-proteins reside (Zhang et al., 2007b). Although
PAC1-R is known to be coupled to the PKA- and PKC-
signaling cascades (Watanabe et al., 1990; Deutsch and
Sun, 1992; Cavallaro et al., 1995; Kozawa et al., 1995),
the action of PACAP on neuritogenesis seems to be me-
diated through a noncanonical cAMP-Rap1-dependent,
PKA-independent pathway (Bouschet et al., 2003; Stes-
sin et al., 2006; Gerdin and Eiden, 2007; Ravni et al.,
2008). Via mechanisms that are probably connected,
PACAP induces a transient activation of Rac1 at fila-
mentous actin-rich protrusions, which is likely to con-
tribute to neurite formation (Sakai et al., 2004). It has
also been shown that the extracellular ERK MAPK cas-
cade is required for initiating the effect of PACAP on
PC12 cell differentiation into sympathetic-like neurons
(Vaudry et al., 2002e; Traverse et al., 1992; Frödin et al.,
1994; Barrie et al., 1997; Tanaka et al., 1997a). In addi-
tion, PACAP prevents apoptosis of PC12 cells provoked
by serum depletion, glutamate, prion protein fragment
106–126, amyloid, or rotenone, through stimulation of
the PKA pathway and subsequent activation of the
MAPK cascade (Tanaka et al., 1997a; Onoue et al.,
2002a,b,c; Wang et al., 2005). PACAP also prevents ce-
ramide-induced apoptosis of PC12 cells by affecting sig-
naling events downstream of the JNK (Hartfield et al.,
1998). Finally, it has recently been reported that the
neuroprotective effect of nicotine on differentiated PC12
cells could involve PACAP expression (Tominaga et al.,
2008). Besides its effects on PC12 cell differentiation
and survival, PACAP has been shown to stimulate cat-
echolamine secretion, to induce cell excitability, and to
enhance the biosynthesis of other neuropeptides in PC12
cells (Corbitt et al., 1998; Grumolato et al., 2003b; Ravni
et al., 2006b). The PACAP-evoked increase in TH ex-
pression is regulated through both the PKA and PKC
pathways (Corbitt et al., 2002). PACAP also enhances
chromogranin A gene expression (Taupenot et al., 1998);
activates the transcription of transfected neuropeptide
Y, NPY-Y1 receptor gene, and proenkephalin A (Colbert
et al., 1994; Monnier and Loeffler, 1998); and regulates
genes bearing a CRE or 12-O-tetradecanoylphorbol 13-
acetate response element motif via the cAMP/PKA and
PLC/inositol 1,4,5-trisphosphate pathways (Schadlow et
al., 1992; Monnier and Loeffler, 1998; Bournat and
Allen, 2001). Microarray studies have provided a com-
prehensive view of the genes activated by PACAP in
PC12 cells (Vaudry et al., 2002b; Grumolato et al.,
2003b; Ishido and Masuo, 2004; Eiden et al., 2008; Ravni
et al., 2008). Many of the known genes and proteins
regulated by PACAP are associated with neuritogenesis
[i.e., DISC1-binding zinc-finger protein or early growth
response 1 (Hattori et al., 2007; Ravni et al., 2008)],
hormone secretion [i.e., selenoprotein T (Grumolato et
al., 2003a, 2008)], cell growth [i.e., growth arrest specific
1 or cyclin B2 (Vaudry et al., 2002b)], and cell survival
[i.e., caspase3 or serum/glucocorticoid regulated kinase
(Lebon et al., 2006; Ravni et al., 2006a, 2008; Samal et

al., 2007)]. It should be pointed out, however, that dur-
ing differentiation, PACAP probably synergizes with
other growth factors to induce the full functional pheno-
type of neuroendocrine cells (Lazarovici and Fink, 1999;
Hashimoto et al., 2000a; Sakai et al., 2001; Vaudry and
Taupenot, 2002; Beaujean et al., 2003; Greene and An-
gelastro, 2005).

In tumor pituitary cells, PACAP modulates hormone
secretion and/or cell proliferation. For instance, PACAP
stimulates the catalytic and regulatory subunits of PKA
in the mouse gonadotrope �T3–1 cell line (Garrel et al.,
1997) and inhibits TGF-�-induced apoptosis in the hu-
man pituitary adenoma cell line HP75 (Oka et al., 1999).
In the lactotrope 235–1 cell line, PACAP stimulates pro-
lactin release through activation of the PLC pathway
and exerts mitogenic effects (Hammond et al., 1996). In
the lactotrope/somatotrope GH3 cell lines, nanomolar
concentrations of PACAP stimulate GH and PRL release
through activation of type II receptors and recruitment
of voltage-gated sodium channels (Propato-Mussafiri et
al., 1992; Murakami et al., 1995). In GH3 cells, PACAP
also stimulates the expression of the pituitary-specific
variant of estrogen receptor � (TERP-1) (Bryant et al.,
2006). The increase of PRL mRNA level induced by
PACAP is mediated through a cAMP/PKA/ERK-depen-
dent pathway that is distinct from the mechanisms in-
volved for PRL and GH secretion (Coleman and Ban-
croft, 1993; Murakami et al., 1995; Koshimura et al.,
1997; Yonehara et al., 2001). Similar mechanisms have
been reported with the somatolactotrope GH4C1 cell
line, in which PACAP activates PRL gene expression
through VPAC2-R in a cAMP/PKA/ERK/Rap1-depen-
dent manner (Le Péchon-Vallée et al., 2000; Romano et
al., 2003). In the corticotrope AtT20 cell line, PACAP
mimics the effect of CRH; i.e., it stimulates AC activity
and triggers both POMC gene transcription and adreno-
corticotropin release (Koch and Lutz-Bucher, 1992a,
1995; Boutillier et al., 1994; Braas et al., 1994; Aoki et
al., 1997). In the folliculostellate cell line TtT/GF,
PACAP increases IL-6 secretion (Matsumoto et al.,
1993). PACAP has also been found to activate human
pituitary adenomas: in actively secreting adenoma,
PACAP exhibits a modest stimulatory effect on adreno-
corticotropin, GH, or gonadotropin release (Desai et al.,
1994), whereas in nonfunctional pituitary tumors,
PACAP stimulates cAMP formation and induces calcium
influx through L-type calcium channels (Lania et al.,
1995).

Taken together, these observations indicate that
PACAP either stimulates or inhibits the proliferation of
many tumor cell types. In some tumor cells, PACAP has
also been shown to promote survival and to enhance
hormone secretion. Thus, selective PACAP agonists or
antagonists are now raising interest for development
into therapeutically valuable antitumoral agents (Jiang
et al., 1997; Frühwald et al., 1999).
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Bruch L, Bychkov R, Kästner A, Bülow T, Ried C, Gollasch M, Baumann G, Luft FC,
and Haller H (1997) Pituitary adenylate-cyclase-activating peptides relax human
coronary arteries by activating K(ATP) and K(Ca) channels in smooth muscle cells.
J Vasc Res 34:11–18.

Bryant WM, Gibson MA, and Shupnik MA (2006) Stimulation of the novel estrogen
receptor-alpha intronic TERP-1 promoter by estrogens, androgen, pituitary ade-

nylate cyclase-activating peptide, and forskolin, and autoregulation by TERP-1
protein. Endocrinology 147:543–551.

Buscail L, Cambillau C, Seva C, Scemama JL, De Neef P, Robberecht P, Christophe
J, Susini C, and Vaysse N (1992) Stimulation of rat pancreatic tumoral AR4–2J
cell proliferation by pituitary adenylate cyclase-activating peptide. Gastroenterol-
ogy 103:1002–1008.

Buscail L, Gourlet P, Cauvin A, De Neef P, Gossen D, Arimura A, Miyata A, Coy DH,
Robberecht P, and Christophe J (1990) Presence of highly selective receptors for
PACAP (pituitary adenylate cyclase activating peptide) in membranes from the rat
pancreatic acinar cell line AR 4–2J. FEBS Lett 262:77–81.

Busto R, Carrero I, Guijarro LG, Solano RM, Zapatero J, Noguerales F, and Prieto JC
(1999) Expression, pharmacological, and functional evidence for PACAP/VIP re-
ceptors in human lung. Am J Physiol 277:L42–L48.

Busto R, Prieto JC, Bodega G, Zapatero J, Fogué L, and Carrero I (2003) VIP and
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Cebolla B, Fernández-Pérez A, Perea G, Araque A, and Vallejo M (2008) DREAM
mediates cAMP-dependent, Ca2�-induced stimulation of GFAP gene expression
and regulates cortical astrogliogenesis. J Neurosci 28:6703–6713.

Cecconi S, Rossi G, Barberi M, Scaldaferri L, and Canipari R (2004) Effect of
pituitary adenylate cyclase-activating polypeptide and vasoactive intestinal
polypeptide on mouse preantral follicle development in vitro. Endocrinology 145:
2071–2079.

Chafai M, Louiset E, Basille M, Cazillis M, Vaudry D, Rostène W, Gressens P,
Vaudry H, and Gonzalez BJ (2006) PACAP and VIP promote initiation of electro-
physiological activity in differentiating embryonic stem cells. Ann N Y Acad Sci
1070:185–189.

Chakder S and Rattan S (1998) Involvement of pituitary adenylate cyclase-
activating peptide in opossum internal anal sphincter relaxation. Am J Physiol
275:G769–G777.

Chamoux E, Breault L, LeHoux JG, and Gallo-Payet N (1998) Comparative effects of
ACTH, PACAP, and VIP on fetal human adrenal cells. Endocr Res 24:943–946.

Chan KW, Yu KL, Rivier J, and Chow BK (1998) Identification and characterization
of a receptor from goldfish specific for a teleost growth hormone-releasing hor-
mone-like peptide. Neuroendocrinology 68:44–56.

Chang E, Welch S, Luna J, Giacalone J, and Francke U (1993) Generation of a
human chromosome 18-specific YAC clone collection and mapping of 55 unique
YACs by FISH and fingerprinting. Genomics 17:393–402.

Chang JY, Korolev VV, and Wang JZ (1996) Cyclic AMP and pituitary adenylate
cyclase-activating polypeptide (PACAP) prevent programmed cell death of cul-
tured rat cerebellar granule cells. Neurosci Lett 206:181–184.

Chang Y, Lawson LJ, Hancock JC, and Hoover DB (2005) Pituitary adenylate
cyclase-activating polypeptide: localization and differential influence on isolated
hearts from rats and guinea pigs. Regul Pept 129:139–146.

Charli JL, Vargas MA, Cisneros M, de Gortari P, Baeza MA, Jasso P, Bourdais J,
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berecht P (1995) Fragments of pituitary adenylate cyclase activating polypeptide
discriminate between type I and II recombinant receptors. Eur J Pharmacol
287:7–11.

Gourlet P, Vandermeers A, Vandermeers-Piret MC, Rathé J, De Neef P, and Rob-
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Läuff JM, Modlin IM, and Tang LH (1999) Biological relevance of pituitary adenylate
cyclase-activating polypeptide (PACAP) in the gastrointestinal tract. Regul Pept
84:1–12.
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Mukohyama H, Ransjö M, Taniguchi H, Ohyama T, and Lerner UH (2000) The
inhibitory effects of vasoactive intestinal peptide and pituitary adenylate cyclase-
activating polypeptide on osteoclast formation are associated with upregulation of
osteoprotegerin and downregulation of RANKL and RANK. Biochem Biophys Res
Commun 271:158–163.

Mulder H, Uddman R, Moller K, Elsås T, Ekblad E, Alumets J, and Sundler F (1995)
Pituitary adenylate cyclase activating polypeptide is expressed in autonomic neu-
rons. Regul Pept 59:121–128.

Mulder H, Uddman R, Moller K, Zhang YZ, Ekblad E, Alumets J, and Sundler F
(1994) Pituitary adenylate cyclase activating polypeptide expression in sensory
neurons. Neuroscience 63:307–312.

Mungan Z, Arimura A, Ertan A, Rossowski WJ, and Coy DH (1992a) Pituitary
adenylate cyclase-activating polypeptide relaxes rat gastrointestinal smooth mus-
cle. Scand J Gastroenterol 27:375–380.

Mungan Z, Ertan A, Hammer RA, and Arimura A (1991) Effect of pituitary adenylate
cyclase activating polypeptide on rat pancreatic exocrine secretion. Peptides 12:
559–562.

Mungan Z, Hammer RA, Akarca US, Komaki G, Ertan A, and Arimura A (1995)
Effect of PACAP on gastric acid secretion in rats. Peptides 16:1051–1056.

Mungan Z, Ozmen V, Ertan A, and Arimura A (1992b) Pituitary adenylate cyclase
activating polypeptide-27 (PACAP-27) inhibits pentagastrin-stimulated gastric
acid secretion in conscious rats. Regul Pept 38:199–206.

Murakami Y, Koshimura K, Yamauchi K, Nishiki M, Tanaka J, Furuya H, Miyake
T, and Kato Y (1995) Pituitary adenylate cyclase activating polypeptide (PACAP)
stimulates growth hormone release from GH3 cells through type II PACAP recep-
tor. Regul Pept 56:35–40.

Murase T, Kondo K, Arima H, Iwasaki Y, Ito M, Miura Y, and Oiso Y (1995) The
expression of pituitary adenylate cyclase-activating polypeptide (PACAP) mRNA
in rat brain: possible role of endogenous PACAP in vasopressin release. Neurosci
Lett 185:103–106.

Murase T, Kondo K, Otake K, and Oiso Y (1993) Pituitary adenylate cyclase-
activating polypeptide stimulates arginine vasopressin release in conscious rats.
Neuroendocrinology 57:1092–1096.

Muratori M, Romano C, Gambino G, and Faglia G (1994) Prolactin responsiveness to

peptide histidine methionine-27 in normal subjects and hyperprolactinemic pa-
tients. Horm Res 42:257–261.

Murthy KS, Jin JG, Grider JR, and Makhlouf GM (1997) Characterization of PACAP
receptors and signaling pathways in rabbit gastric muscle cells. Am J Physiol
272:G1391–G1399.

Nagahama M, Tsuzuki M, Mochizuki T, Iguchi K, and Kuwahara A (1998) Light and
electron microscopic studies of pituitary adenylate cyclase-activating peptide
(PACAP)–immunoreactive neurons in the enteric nervous system of rat small and
large intestine. Anat Embryol 198:341–352.

Nagao H, Matsuoka I, and Kurihara K (1995) Effects of adenylyl cyclase-linked
neuropeptides on the expression of ciliary neurotrophic factor-mRNA in cultured
astrocytes. FEBS Lett 362:75–79.

Nagata A, Tanaka T, Minezawa A, Poyurovsky M, Mayama T, Suzuki S, Hashimoto
N, Yoshida T, Suyama K, Miyata A, et al. (2009) cAMP activation by PACAP/VIP
stimulates IL-6 release and inhibits osteoblastic differentiation through VPAC2
receptor in osteoblastic MC3T3 cells. J Cell Physiol 221:75–83.

Nagy AD and Csernus VJ (2007) The role of PACAP in the control of circadian
expression of clock genes in the chicken pineal gland. Peptides 28:1767–1774.

Nagy H, Vigh S, and Arimura A (1993) PACAP induces prolactin and growth
hormone release in lactating rats separated from their pups. Endocr J 1:169–173.

Nakahara K, Abe Y, Murakami T, Shiota K, and Murakami N (2002) Pituitary
adenylate cyclase-activating polypeptide (PACAP) is involved in melatonin release
via the specific receptor PACAP-r1, but not in the circadian oscillator, in chick
pineal cells. Brain Res 939:19–25.

Nakamachi T, Li M, Shioda S, and Arimura A (2006) Signaling involved in pituitary
adenylate cyclase-activating polypeptide-stimulated ADNP expression. Peptides
27:1859–1864.

Nakata M, Kohno D, Shintani N, Nemoto Y, Hashimoto H, Baba A, and Yada T
(2004) PACAP deficient mice display reduced carbohydrate intake and PACAP
activates NPY-containing neurons in the rat hypothalamic arcuate nucleus. Neu-
rosci Lett 370:252–256.

Nakatani M, Seki T, Shinohara Y, Taki C, Nishimura S, Takaki A, and Shioda S
(2006) Pituitary adenylate cyclase-activating peptide (PACAP) stimulates produc-
tion of interleukin-6 in rat Müller cells. Peptides 27:1871–1876.

Nandha KA, Benito-Orfila MA, Smith DM, Ghatei MA, and Bloom SR (1991) Action
of pituitary adenylate cyclase-activating polypeptide and vasoactive intestinal
polypeptide on the rat vascular system: effects on blood pressure and receptor
binding. J Endocrinol 129:69–73.

Naruse S, Suzuki T, and Ozaki T (1992) The effect of pituitary adenylate cyclase
activating polypeptide (PACAP) on exocrine pancreatic secretion in dogs. Pancreas
7:543–547.

Naruse S, Suzuki T, Ozaki T, and Nokihara K (1993) Vasodilator effect of pituitary
adenylate cyclase activating polypeptide (PACAP) on femoral blood flow in dogs.
Peptides 14:505–510.

Nemetz N, Abad C, Lawson G, Nobuta H, Chhith S, Duong L, Tse G, Braun J, and
Waschek JA (2008) Induction of colitis and rapid development of colorectal tumors
in mice deficient in the neuropeptide PACAP. Int J Cancer 122:1803–1809.

Neri G, Andreis PG, Prayer-Galetti T, Rossi GP, Malendowicz LK, and Nussdorfer
GG (1996) Pituitary adenylate-cyclase activating peptide enhances aldosterone
secretion of human adrenal gland: evidence for an indirect mechanism, probably
involving the local release of catecholamines. J Clin Endocrinol Metab 81:169–
173.

Ngan ES, Leung PC, and Chow BK (2001) Interplay of pituitary adenylate cyclase-
activating polypeptide with a silencer element to regulate the upstream promoter
of the human gonadotropin-releasing hormone receptor gene. Mol Cell Endocrinol
176:135–144.

Nguyen TD, Heintz GG, and Wolfe MS (1993) Structural characterization of PACAP
receptors on rat liver plasma membranes. Am J Physiol 265:G811–G818.

Nicole P, Lins L, Rouyer-Fessard C, Drouot C, Fulcrand P, Thomas A, Couvineau A,
Martinez J, Brasseur R, and Laburthe M (2000) Identification of key residues for
interaction of vasoactive intestinal peptide with human VPAC1 and VPAC2 re-
ceptors and development of a highly selective VPAC1 receptor agonist. Alanine
scanning and molecular modeling of the peptide. J Biol Chem 275:24003–24012.

Nicot A and DiCicco-Bloom E (2001) Regulation of neuroblast mitosis is determined
by PACAP receptor isoform expression. Proc Natl Acad Sci U S A 98:4758–4763.
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Niewiadomski P, Coûté-Monvoisin AC, Abad C, Ngo D, Menezes A, and Waschek JA
(2008) Mice deficient in both pituitary adenylyl cyclase-activating polypeptide and
vasoactive intestinal peptide survive, but display growth retardation and sex-
dependent early death. J Mol Neurosci 36:200–207.

Niewiadomski P, Nowak JZ, Sedkowska P, and Zawilska JB (2002) Rapid desensi-

PITUITARY ADENYLATE CYCLASE-ACTIVATING POLYPEPTIDE 347



tization of receptors for pituitary adenylate cyclase-activating polypeptide
(PACAP) in chick cerebral cortex. Pol J Pharmacol 54:717–721.

Nilsson SF (1994) PACAP-27 and PACAP-38: vascular effects in the eye and some
other tissues in the rabbit. Eur J Pharmacol 253:17–25.

Nishimoto M, Furuta A, Aoki S, Kudo Y, Miyakawa H, and Wada K (2007) PACAP/
PAC1 autocrine system promotes proliferation and astrogenesis in neural progen-
itor cells. Glia 55:317–327.

Nishizawa M, Hayakawa Y, Yanaihara N, and Okamoto H (1985) Nucleotide se-
quence divergence and functional constraint in VIP precursor mRNA evolution
between human and rat. FEBS Lett 183:55–59.

Nogi H, Hashimoto H, Fujita T, Hagihara N, Matsuda T, and Baba A (1997a)
Pituitary adenylate cyclase-activating polypeptide (PACAP) receptor mRNA in the
rat adrenal gland: localization by in situ hybridization and identification of splice
variants. Jpn J Pharmacol 75:203–207.

Nogi H, Hashimoto H, Hagihara N, Shimada S, Yamamoto K, Matsuda T, Tohyama
M, and Baba A (1997b) Distribution of mRNAs for pituitary adenylate cyclase-
activating polypeptide (PACAP), PACAP receptor, vasoactive intestinal polypep-
tide (VIP), and VIP receptors in the rat superior cervical ganglion. Neurosci Lett
227:37–40.

Nomura M, Ueta Y, Larsen PJ, Hannibal J, Serino R, Kabashima N, Shibuya I, and
Yamashita H (1997) Water deprivation increases the expression of pituitary ade-
nylate cyclase-activating polypeptide gene in the rat subfornical organ. Endocri-
nology 138:4096–4100.

Nomura M, Ueta Y, Serino R, Kabashima N, Shibuya I, and Yamashita H (1996)
PACAP type I receptor gene expression in the paraventricular and supraoptic
nuclei of rats. Neuroreport 8:67–70.

Nomura M, Ueta Y, Serino R, Yamamoto Y, Shibuya I, and Yamashita H (1999)
Effects of centrally administered pituitary adenylate cyclase-activating polypep-
tide on c-fos gene expression and heteronuclear RNA for vasopressin in rat para-
ventricular and supraoptic nuclei. Neuroendocrinology 69:167–180.

Nonaka N, Shioda S, and Banks WA (2005) Effect of lipopolysaccharide on the
transport of pituitary adenylate cyclase activating polypeptide across the blood-
brain barrier. Exp Neurol 191:137–144.
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G, Hegyi O, et al. (2008) PKA-Bad-14–3-3 and Akt-Bad-14–3-3 signaling path-
ways are involved in the protective effects of PACAP against ischemia/reperfusion-
induced cardiomyocyte apoptosis. Regul Pept 145:105–115.

Racz B, Horvath G, Faluhelyi N, Nagy AD, Tamas A, Kiss P, Gallyas F Jr, Toth G,
Gaszner B, Csernus V, et al. (2008) Effects of PACAP on the circadian changes of
signaling pathways in chicken pinealocytes. J Mol Neurosci 36:220–226.

Raderer M, Kurtaran A, Yang Q, Meghdadi S, Vorbeck F, Hejna M, Angelberger P,
Kornek G, Pidlich J, Scheithauer W, et al. (1998) Iodine-123-vasoactive intestinal
peptide receptor scanning in patients with pancreatic cancer. J Nucl Med 39:
1570–1575.

Radziszewski P, Ekblad E, Sundler F, and Mattiasson A (1996) Distribution of
neuropeptide-, tyrosine hydroxylase- and nitric oxide synthase containing nerve
fibers in the external urethral sphincter of the rat. Scand J Urol Nephrol Suppl
179:81–85.
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ate cyclase activating polypeptide protects dopaminergic neurons and improves
behavioral deficits in a rat model of Parkinson’s disease. Behav Brain Res 151:
303–312.

Reglodi D, Somogyvari-Vigh A, Vigh S, Kozicz T, and Arimura A (2000) Delayed
systemic administration of PACAP38 is neuroprotective in transient middle cere-
bral artery occlusion in the rat. Stroke 31:1411–1417.
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PACAP administration in rats delays puberty through the influence of the LHRH
neuronal system. Regul Pept 109:49–55.

Sze KH, Zhou H, Yang Y, He M, Jiang Y, and Wong AO (2007) Pituitary adenylate
cyclase-activating polypeptide (PACAP) as a growth hormone (GH)-releasing fac-
tor in grass carp: II. Solution structure of a brain-specific PACAP by nuclear
magnetic resonance spectroscopy and functional studies on GH release and gene
expression. Endocrinology 148:5042–5059.

Szema AM, Hamidi SA, Lyubsky S, Dickman KG, Mathew S, Abdel-Razek T, Chen
JJ, Waschek JA, and Said SI (2006) Mice lacking the VIP gene show airway
hyperresponsiveness and airway inflammation, partially reversible by VIP. Am J
Physiol Lung Cell Mol Physiol 291:L880–L886.

Tabarin A, Chen D, Håkanson R, and Sundler F (1994) Pituitary adenylate cyclase-
activating peptide in the adrenal gland of mammals: distribution, characterization
and responses to drugs. Neuroendocrinology 59:113–119.

Tabuchi A, Koizumi M, and Tsuda M (2001b) Novel splice variants of PACAP gene
in mouse cerebellar granule cells. Neuroreport 12:1181–1186.

Tabuchi A, Koizumi M, Nakatsubo J, Yaguchi T, and Tsuda M (2001a) Involvement
of endogenous PACAP expression in the activity-dependent survival of mouse
cerebellar granule cells. Neurosci Res 39:85–93.

Tachibana T, Saito S, Tomonaga S, Takagi T, Saito ES, Boswell T, and Furuse M
(2003) Intracerebroventricular injection of vasoactive intestinal peptide and pitu-
itary adenylate cyclase-activating polypeptide inhibits feeding in chicks. Neurosci
Lett 339:203–206.

Tajti J, Uddman R, and Edvinsson L (2001) Neuropeptide localization in the “mi-
graine generator” region of the human brainstem. Cephalalgia 21:96–101.

Takahashi K, Totsune K, Murakami O, Satoh F, Sone M, Ohneda M, Sasano H, and
Mouri T (1994) Pituitary adenylate cyclase activating polypeptide (PACAP)-like
immunoreactivity in human hypothalamus: co-localization with arginine vaso-
pressin. Regul Pept 50:267–275.

Takahashi K, Totsune K, Murakami O, Sone M, Itoi K, Hayashi Y, Ohi R, and Mouri
T (1993a) Pituitary adenylate cyclase activating polypeptide (PACAP)-like immu-
noreactivity in ganglioneuroblastoma and neuroblastoma. Regul Pept 49:19–24.

Takahashi K, Totsune K, Murakami O, Sone M, Itoi K, Miura Y, and Mouri T (1993b)
Pituitary adenylate cyclase activating polypeptide (PACAP)-like immunoreactiv-
ity in pheochromocytomas. Peptides 14:365–369.
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and Dóczi T (2006) Postinjury administration of pituitary adenylate cyclase acti-
vating polypeptide (PACAP) attenuates traumatically induced axonal injury in
rats. J Neurotrauma 23:686–695.

Tams JW, Johnsen AH, and Fahrenkrug J (1999) Identification of pituitary adenyl-
ate cyclase-activating polypeptide1–38-binding factor in human plasma, as ceru-
loplasmin. Biochem J 341:271–276.

Tams JW, Jorgensen RM, Holm A, and Fahrenkrug J (2000) Creation of a selective
antagonist and agonist of the rat VPAC(1) receptor using a combinatorial approach
with vasoactive intestinal peptide 6–23 as template. Mol Pharmacol 58:1035–
1041.

Tan YV, Abad C, Lopez R, Dong H, Liu S, Lee A, Gomariz RP, Leceta J, and Waschek
JA (2009) Pituitary adenylyl cyclase-activating polypeptide is an intrinsic regula-
tor of Treg abundance and protects against experimental autoimmune encephalo-
myelitis. Proc Natl Acad Sci U S A 106:2012–2017.

Tanaka J, Koshimura K, Murakami Y, Sohmiya M, Yanaihara N, and Kato Y (1997a)
Neuronal protection from apoptosis by pituitary adenylate cyclase-activating
polypeptide. Regul Pept 72:1–8.

Tanaka K, Shibuya I, Harayama N, Nomura M, Kabashima N, Ueta Y, and Ya-
mashita H (1997b) Pituitary adenylate cyclase-activating polypeptide potentiation
of Ca2� entry via protein kinase C and A pathways in melanotrophs of the
pituitary pars intermedia of rats. Endocrinology 138:4086–4095.

Tanaka K, Shibuya I, Nagamoto T, Yamashita H, and Kanno T (1996) Pituitary
adenylate cyclase-activating polypeptide causes rapid Ca2� release from intracel-
lular stores and long lasting Ca2� influx mediated by Na� influx-dependent
membrane depolarization in bovine adrenal chromaffin cells. Endocrinology 137:
956–966.

Tanaka K, Shibuya I, Uezono Y, Ueta Y, Toyohira Y, Yanagihara N, Izumi F, Kanno
T, and Yamashita H (1998) Pituitary adenylate cyclase-activating polypeptide
causes Ca2� release from ryanodine/caffeine stores through a novel pathway
independent of both inositol trisphosphates and cyclic AMP in bovine adrenal
medullary cells. J Neurochem 70:1652–1661.

Tanaka K, Shintani N, Hashimoto H, Kawagishi N, Ago Y, Matsuda T, Hashimoto R,
Kunugi H, Yamamoto A, Kawaguchi C, et al. (2006) Psychostimulant-induced
attenuation of hyperactivity and prepulse inhibition deficits in Adcyap1-deficient
mice. J Neurosci 26:5091–5097.

Tatsuno I and Arimura A (1994) Pituitary adenylate cyclase-activating polypeptide
(PACAP) mobilizes intracellular free calcium in cultured rat type-2, but not type-1,
astrocytes. Brain Res 662:1–10.

Tatsuno I, Gottschall PE, and Arimura A (1991a) Inhibition of mitogen-stimulated
proliferation of murine splenocytes by a novel neuropeptide, pituitary adenylate
cyclase activating polypeptide: a comparative study with vasoactive intestinal
peptide. Endocrinology 128:728–734.

Tatsuno I, Gottschall PE, and Arimura A (1991b) Specific binding sites for pituitary
adenylate cyclase activating polypeptide (PACAP) in rat cultured astrocytes: mo-
lecular identification and interaction with vasoactive intestinal peptide (VIP).
Peptides 12:617–621.
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Vincze E, Kántor O, Kausz M, Németh J, Arimura A, Gonda P, and Köves K (2001)
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